Skip to main content

Advertisement

Log in

Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In order to understand mechanisms involved in osteoporosis observed during iron overload diseases, we analyzed the impact of iron on a human osteoblast-like cell line. Iron exposure decreases osteoblast phenotype. HHIPL-2 is an iron-modulated gene which could contribute to these alterations. Our results suggest osteoblast impairment in iron-related osteoporosis.

Introduction

Iron overload may cause osteoporosis. An iron-related decrease in osteoblast activity has been suggested.

Methods

We investigated the effect of iron exposure on human osteoblast cells (MG-63) by analyzing the impact of ferric ammonium citrate (FAC) and iron citrate (FeCi) on the expression of genes involved in iron metabolism or associated with osteoblast phenotype. A transcriptomic analysis was performed to identify iron-modulated genes.

Results

FAC and FeCi exposure modulated cellular iron status with a decrease in TFRC mRNA level and an increase in intracellular ferritin level. FAC increased ROS level and caspase 3 activity. Ferroportin, HFE and TFR2 mRNAs were expressed in MG-63 cells under basal conditions. The level of ferroportin mRNA was increased by iron, whereas HFE mRNA level was decreased. The level of mRNA alpha 1 collagen type I chain, osteocalcin and the transcriptional factor RUNX2 were decreased by iron. Transcriptomic analysis revealed that the mRNA level of HedgeHog Interacting Protein Like-2 (HHIPL-2) gene, encoding an inhibitor of the hedgehog signaling pathway, was decreased in the presence of FAC. Specific inhibition of HHIPL-2 expression decreased osteoblast marker mRNA levels. Purmorphamine, hedgehog pathway activator, increased the mRNA level of GLI1, a target gene for the hedgehog pathway, and decreased osteoblast marker levels. GLI1 mRNA level was increased under iron exposure.

Conclusion

We showed that in human MG-63 cells, iron exposure impacts iron metabolism and osteoblast gene expression. HHIPL-2 gene expression modulation may contribute to these alterations. Our results support a role of osteoblast impairment in iron-related osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weinberg ED (2006) Iron loading: a risk factor for osteoporosis. Biometals 19:633–635

    Article  PubMed  CAS  Google Scholar 

  2. Pietrangelo A, Trautwein C (2004) Mechanisms of disease: the role of hepcidin in iron homeostasis—implications for hemochromatosis and other disorders. Nat Clin Pract Gastroenterol Hepatol 1:39–45

    Article  PubMed  CAS  Google Scholar 

  3. Brissot P, Le Lan C, Lorho R, Gaboriau F, Lescoat G, Loréal O (2005) Genetic hemochromatosis update. Acta Gastroenterol Belg 68:33–37

    PubMed  CAS  Google Scholar 

  4. Niederau C, Fischer R, Purschel A, Stremmel W, Haussinger D, Strohmeyer G (1996) Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110:1107–1119

    Article  PubMed  CAS  Google Scholar 

  5. Brissot P, Troadec MB, Bardou-Jacquet E, Le Lan C, Jouanolle AM, Deugnier Y, Loréal O (2008) Current approach to hemochromatosis. Blood Rev 22:195–210

    Article  PubMed  Google Scholar 

  6. Pawlotsky Y, Le Dantec P, Moirand R, Guggenbuhl P, Jouanolle AM, Catheline M, Meadeb J, Brissot P, Deugnier Y, Chales G (1999) Elevated parathyroid hormone 44–68 and osteoarticular changes in patients with genetic hemochromatosis. Arthritis Rheum 42:799–806

    Article  PubMed  CAS  Google Scholar 

  7. Guggenbuhl P, Albert JD, Chales G (2007) Rheumatic manifestations of genetic hemochromatosis. Presse Med 36:1313–1318

    Article  PubMed  Google Scholar 

  8. Sinigaglia L, Fargion S, Fracanzani AL, Binelli L, Battafarano N, Varenna M, Piperno A, Fiorelli G (1997) Bone and joint involvement in genetic hemochromatosis: role of cirrhosis and iron overload. J Rheumatol 24:1809–1813

    PubMed  CAS  Google Scholar 

  9. Guggenbuhl P, Deugnier Y, Boisdet JF, Rolland Y, Perdriger A, Pawlotsky Y, Chales G (2005) Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int 16:1809–1814

    Article  PubMed  CAS  Google Scholar 

  10. Valenti L, Varenna M, Fracanzani AL, Rossi V, Fargion S, Sinigaglia L (2009) Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Osteoporos Int 20:549–555

    Article  PubMed  CAS  Google Scholar 

  11. Jensen CE, Tuck SM, Agnew JE, Koneru S, Morris RW, Yardumian A, Prescott E, Hoffbrand AV, Wonke B (1998) High prevalence of low bone mass in thalassaemia major. Br J Haematol 103:911–915

    Article  PubMed  CAS  Google Scholar 

  12. Jensen CE, Tuck SM, Agnew JE, Koneru S, Morris RW, Yardumian A, Prescott E, Hoffbrand AV, Wonke B (1998) High incidence of osteoporosis in thalassaemia major. J Pediatr Endocrinol Metab 11(Suppl 3):975–977

    PubMed  Google Scholar 

  13. Jian J, Pelle E, Huang X (2009) Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxid Redox Signal 11:2939–2943

    Article  PubMed  CAS  Google Scholar 

  14. Pawlotsky Y, Lancien Y, Roudier G, Hany Y, Louboutin JY, Ferrand B, Bourel M (1979) Bone histomorphometry and osteo-articular manifestations of idiopathic hemochromatosis. Rev Rhum Mal Osteoartic 46:91–99

    PubMed  CAS  Google Scholar 

  15. Conte D, Caraceni MP, Duriez J, Mandelli C, Corghi E, Cesana M, Ortolani S, Bianchi PA (1989) Bone involvement in primary hemochromatosis and alcoholic cirrhosis. Am J Gastroenterol 84:1231–1234

    PubMed  CAS  Google Scholar 

  16. de Vernejoul MC, Pointillart A, Golenzer CC, Morieux C, Bielakoff J, Modrowski D, Miravet L (1984) Effects of iron overload on bone remodeling in pigs. Am J Pathol 116:377–384

    PubMed  Google Scholar 

  17. Matsushima S, Hoshimoto M, Torii M, Ozaki K, Narama I (2001) Iron lactate-induced osteopenia in male Sprague–Dawley rats. Toxicol Pathol 29:623–629

    Article  PubMed  CAS  Google Scholar 

  18. Guggenbuhl P, Fergelot P, Doyard M, Libouban H, Roth MP, Gallois Y, Chales G, Loréal O, Chappard D (2011) Bone status in a mouse model of genetic hemochromatosis. Osteoporos Int 22:2313–2319

    Article  PubMed  CAS  Google Scholar 

  19. Messer JG, Kilbarger AK, Erikson KM, Kipp DE (2009) Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 45:972–979

    Article  PubMed  CAS  Google Scholar 

  20. Yamasaki K, Hagiwara H (2009) Excess iron inhibits osteoblast metabolism. Toxicol Lett 191:211–215

    Article  PubMed  CAS  Google Scholar 

  21. Yang Q, Jian J, Abramson SB, Huang X (2011) Inhibitory effects of iron on bone morphogenetic protein-2-induced osteoblastogenesis. J Bone Miner Res 26:1188–1196

    Article  PubMed  CAS  Google Scholar 

  22. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  PubMed  CAS  Google Scholar 

  23. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA 98:8780–8785

    Article  PubMed  CAS  Google Scholar 

  24. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  PubMed  CAS  Google Scholar 

  25. Kasai K, Hori MT, Goodman WG (1990) Characterization of the transferrin receptor in UMR-106-01 osteoblast-like cells. Endocrinology 126:1742–1749

    Article  PubMed  CAS  Google Scholar 

  26. Spanner M, Weber K, Lanske B, Ihbe A, Siggelkow H, Schutze H, Atkinson MJ (1995) The iron-binding protein ferritin is expressed in cells of the osteoblastic lineage in vitro and in vivo. Bone 17:161–165

    Article  PubMed  CAS  Google Scholar 

  27. Choi HD, Noh WC, Park JW, Lee JM, Suh JY (2011) Analysis of gene expression during mineralization of cultured human periodontal ligament cells. J Periodontal Implant Sci 41:30–43

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz-Gaspa S, Nogues X, Enjuanes A, Monllau JC, Blanch J, Carreras R, Mellibovsky L, Grinberg D, Balcells S, Diez-Perez A, Pedro-Botet J (2007) Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J Cell Biochem 101:1430–1438

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Li LZ, Zhang YL, Zhu YQ, Wu J, Sun WJ (2011) LC, a novel estrone-rhein hybrid compound, concurrently stimulates osteoprotegerin and inhibits receptor activator of NF-kappaB ligand (RANKL) and interleukin-6 production by human osteoblastic cells. Mol Cell Endocrinol 337:43–51

    Article  PubMed  CAS  Google Scholar 

  30. Grausova L, Kromka A, Burdikova Z, Eckhardt A, Rezek B, Vacik J, Haenen K, Lisa V, Bacakova L (2011) Enhanced growth and osteogenic differentiation of human osteoblast-like cells on boron-doped nanocrystalline diamond thin films. PLoS One 6:e20943

    Article  PubMed  CAS  Google Scholar 

  31. Hershko C, Graham G, Bates GW, Rachmilewitz EA (1978) Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br J Haematol 40:255–263

    Article  PubMed  CAS  Google Scholar 

  32. Breuer W, Ronson A, Slotki IN, Abramov A, Hershko C, Cabantchik ZI (2000) The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood 95:2975–2982

    PubMed  CAS  Google Scholar 

  33. Grootveld M, Bell JD, Halliwell B, Aruoma OI, Bomford A, Sadler PJ (1989) Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem 264:4417–4422

    PubMed  CAS  Google Scholar 

  34. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    Article  PubMed  CAS  Google Scholar 

  35. Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23

    Article  PubMed  CAS  Google Scholar 

  36. Avery SV Molecular targets of oxidative stress. Biochem J 434:201–10

  37. Katoh Y, Katoh M (2006) Comparative genomics on HHIP family orthologs. Int J Mol Med 17:391–395

    PubMed  CAS  Google Scholar 

  38. Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397:617–621

    Article  PubMed  CAS  Google Scholar 

  39. Bishop B, Aricescu AR, Harlos K, O’Callaghan CA, Jones EY, Siebold C (2009) Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nat Struct Mol Biol 16:698–703

    Article  PubMed  CAS  Google Scholar 

  40. Spinella-Jaegle S, Rawadi G, Kawai S, Gallea S, Faucheu C, Mollat P, Courtois B, Bergaud B, Ramez V, Blanchet AM, Adelmant G, Baron R, Roman-Roman S (2001) Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 114:2085–2094

    PubMed  CAS  Google Scholar 

  41. van der Horst G, Farih-Sips H, Lowik CW, Karperien M (2003) Hedgehog stimulates only osteoblastic differentiation of undifferentiated KS483 cells. Bone 33:899–910

    Article  PubMed  Google Scholar 

  42. Shimoyama A, Wada M, Ikeda F, Hata K, Matsubara T, Nifuji A, Noda M, Amano K, Yamaguchi A, Nishimura R, Yoneda T (2007) Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol Biol Cell 18:2411–2418

    Article  PubMed  CAS  Google Scholar 

  43. Mak KK, Bi Y, Wan C, Chuang PT, Clemens T, Young M, Yang Y (2008) Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev Cell 14:674–688

    Article  PubMed  CAS  Google Scholar 

  44. Plaisant M, Fontaine C, Cousin W, Rochet N, Dani C, Peraldi P (2009) Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells 27:703–713

    Article  PubMed  CAS  Google Scholar 

  45. Oliveira F, Bellesini L, Defino H, da Silva HC, Beloti M, Rosa A (2011) Hedgehog signaling and osteoblast gene expression are regulated by purmorphamine in human mesenchymal stem cells. J Cell Biochem. doi:10.1002/jcb.23345

Download references

Acknowledgements

The authors would like to thank Pr. Josiane Cillard for helpful discussion. This work was supported by grants from the Région Bretagne (MD) and the “Société Française de Rhumatologie” Paris, France.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Loréal or P. Guggenbuhl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Iron metabolism gene expression under basal situation in MG-63 cells. SLC40A1 (a), HFE (b) and TFR2 (c) mRNA levels under basal culture conditions. The results are expressed as a percentage of expression in caco-2 cells (PDF 220 kb)

Fig. S2

Impact of FeCi exposure on the expression of osteoblast genes in MG-63 cells. mRNA levels of COL1A1 (a), BGLAP (b) and RUNX2 (c) in cells treated with FeCi and/or DFO for 72 h. The results are expressed as a percentage of their respective control (100%). Asterisk indicates p < 0.05 compared with the corresponding concentration of citrate; plus sign indicates p < 0.05 compared with FeCi 20 μM (PDF 454 kb)

Fig. S3

Inhibition of mRNA HHIPL-2 expression by specific siRNAs. HHIPL-2 mRNA level after transfection of MG-63 cells with two HHIPL-2-specific siRNAs (si1 and si2) or with a control siRNA (Control) for 72 h. The results are expressed as a percentage of the control (100%). Asterisk indicates p < 0.05 compared with the control (PDF 224 kb)

Fig. S4

The impact of iron exposure on GLI1 mRNA expression level in MG-63 cells. Expression of GLI1 mRNA after treatment with FAC and/or DFO for 72 h. The results are expressed as a percentage of the control (100%). Asterisk indicates p < 0.05 compared with the control (PDF 66.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyard, M., Fatih, N., Monnier, A. et al. Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells. Osteoporos Int 23, 2435–2445 (2012). https://doi.org/10.1007/s00198-011-1871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1871-z

Keywords

Navigation