Skip to main content
Log in

Bone status in a mouse model of genetic hemochromatosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Genetic hemochromatosis is a cause of osteoporosis; mechanisms leading to iron-related bone loss are not fully characterized. We assessed the bone phenotype of HFE −/− male mice, a mouse model of hemochromatosis. They had a phenotype of osteoporosis with low bone mass and alteration of the bone microarchitecture.

Introduction

Genetic hemochromatosis is a cause of osteoporosis. However, the mechanisms leading to iron-related bone loss are not fully characterized. Recent human data have not supported the hypothesis of hypogonadism involvement. The direct role of iron on bone metabolism has been suggested.

Methods

Our aim was to assess the bone phenotype of HFE −/− male mice, a mouse model of human hemochromatosis, by using microcomputed tomography and histomorphometry. HFE −/− animals were sacrificed at 6 and 12 months and compared to controls.

Results

There was a significant increase in hepatic iron concentration and bone iron content in HFE −/− mice. No detectable Perls’ staining was found in the controls’ trabeculae. Trabecular bone volume (BV/TV) was significantly lower in HFE −/− mice at 6 and 12 months compared to the corresponding wild-type mice: 9.88 ± 0.82% vs 12.82 ± 0.61% (p = 0.009) and 7.18 ± 0.68% vs 10.4 ± 0.86% (p = 0.015), respectively. In addition, there was an impairment of the bone microarchitecture in HFE −/− mice. Finally, we found a significant increase in the osteoclast number in HFE −/− mice: 382.5 ± 36.75 vs 273.4 ± 20.95 ¢/mm2 (p = 0.004) at 6 months and 363.6 ± 22.35 vs 230.8 ± 18.7 ¢/mm2 (p = 0.001) at 12 months in HFE −/− mice vs controls.

Conclusion

Our data show that HFE −/− male mice develop a phenotype of osteoporosis with low bone mass and alteration of the microarchitecture. They suggest that there is a relationship between bone iron overload and the increase of the osteoclast number in these mice. These findings are in accordance with clinical observations in humans exhibiting genetic hemochromatosis and support a role of excess iron in relation to genetic hemochromatosis in the development of osteoporosis in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Delbarre F (1960) Osteoporosis in hemochromatosis. Sem Hôp 36:3279–3294

    PubMed  CAS  Google Scholar 

  2. Niederau C, Fischer R, Purschel A, Stremmel W, Haussinger D, Strohmeyer G (1996) Long-term survival in patients with hereditary hemochromatosis. Gastroenterology 110:1107–1119

    Article  PubMed  CAS  Google Scholar 

  3. Brissot P, Troadec MB, Bardou-Jacquet E, Le Lan C, Jouanolle AM, Deugnier Y, Loreal O (2008) Current approach to hemochromatosis. Blood Rev 22:195–210

    Article  PubMed  Google Scholar 

  4. Pawlotsky Y, Le Dantec P, Moirand R, Guggenbuhl P, Jouanolle AM, Catheline M, Meadeb J, Brissot P, Deugnier Y, Chales G (1999) Elevated parathyroid hormone 44–68 and osteoarticular changes in patients with genetic hemochromatosis. Arthritis Rheum 42:799–806

    Article  PubMed  CAS  Google Scholar 

  5. Guggenbuhl P, Albert JD, Chales G (2007) Rheumatic manifestations of genetic hemochromatosis. Presse Méd 36:1313–1318

    Article  PubMed  Google Scholar 

  6. Sinigaglia L, Fargion S, Fracanzani AL, Binelli L, Battafarano N, Varenna M, Piperno A, Fiorelli G (1997) Bone and joint involvement in genetic hemochromatosis: role of cirrhosis and iron overload. J Rheumatol 24:1809–1813

    PubMed  CAS  Google Scholar 

  7. Guggenbuhl P, Deugnier Y, Boisdet JF, Rolland Y, Perdriger A, Pawlotsky Y, Chales G (2005) Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporos Int 16:1809–1814

    Article  PubMed  CAS  Google Scholar 

  8. Pawlotsky Y, Lancien Y, Roudier G, Hany Y, Louboutin JY, Ferrand B, Bourel M (1979) Bone histomorphometry and osteo-articular manifestations of idiopathic hemochromatosis. Rev Rhum Mal Osteo-artic 46:91–99

    CAS  Google Scholar 

  9. Bisbocci D, Marinone C, Ballanti P, Villata E, Suriano A, Vallauri P, Chiandussi L (1991) Bone involvement in primary hemochromatosis: osteoporosis and hormonal bone pattern in hemochromatosis. In: Gentilini P, Dianzani MU (eds) Experimental and clinical hepatology. Elsevier Science, London, pp 163–169

    Google Scholar 

  10. de Vernejoul MC, Pointillart A, Golenzer CC, Morieux C, Bielakoff J, Modrowski D, Miravet L (1984) Effects of iron overload on bone remodeling in pigs. Am J Pathol 116:377–384

    PubMed  Google Scholar 

  11. Conte D, Caraceni MP, Duriez J, Mandelli C, Corghi E, Cesana M, Ortolani S, Bianchi PA (1989) Bone involvement in primary hemochromatosis and alcoholic cirrhosis. Am J Gastroenterol 84:1231–1234

    PubMed  CAS  Google Scholar 

  12. Diamond TH, Stiel D, Lunzer M, McDowall D, Eckstein RP, Posen S (1989) Hepatic osteodystrophy. Static and dynamic bone histomorphometry and serum bone Gla-protein in 80 patients with chronic liver disease. Gastroenterology 96:213–221

    PubMed  CAS  Google Scholar 

  13. Angelopoulos NG, Goula AK, Papanikolaou G, Tolis G (2006) Osteoporosis in HFE2 juvenile hemochromatosis. A case report and review of the literature. Osteoporos Int 17:150–155

    Article  PubMed  Google Scholar 

  14. Jensen CE, Tuck SM, Agnew JE, Koneru S, Morris RW, Yardumian A, Prescott E, Hoffbrand AV, Wonke B (1998) High prevalence of low bone mass in thalassaemia major. Br J Haematol 103:911–915

    Article  PubMed  CAS  Google Scholar 

  15. Weinberg ED (2006) Iron loading: a risk factor for osteoporosis. Biometals 19:633–635

    Article  PubMed  CAS  Google Scholar 

  16. Dupic F, Fruchon S, Bensaid M, Borot N, Radosavljevic M, Loreal O, Brissot P, Gilfillan S, Bahram S, Coppin H, Roth MP (2002) Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains. Gastroenterology 122:745–751

    Article  PubMed  CAS  Google Scholar 

  17. Klinck J, Boyd SK (2008) The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Calcif Tissue Int 83:70–79

    Article  PubMed  CAS  Google Scholar 

  18. Chappard D, Basle MF, Legrand E, Audran M (2008) Trabecular bone microarchitecture: a review. Morphologie 92:162–170

    Article  PubMed  CAS  Google Scholar 

  19. Chappard D (2009) Technical aspects: how do we best prepare bone samples for proper histological analysis? In D H (ed) Bone cancer: progression and therapeutic approaches. Academic Press; Elsevier, London, pp 203–210

  20. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  21. Chappard D (1990) Osteoclast count on human bone biopsies: Why and How? In: Takahashi FE (ed) Bone morphometry. Nishimura-Smith-Gordon, Niigata, London, pp 248–255

    Google Scholar 

  22. Barry M, Sherlock S (1971) Measurement of liver-iron concentration in needle-biopsy specimens. Lancet 1:100–103

    Article  PubMed  CAS  Google Scholar 

  23. Matsushima S, Hoshimoto M, Torii M, Ozaki K, Narama I (2001) Iron lactate-induced osteopenia in male Sprague-Dawley rats. Toxicol Pathol 29:623–629

    Article  PubMed  CAS  Google Scholar 

  24. Yamasaki K, Hagiwara H (2009) Excess iron inhibits osteoblast metabolism. Toxicol Lett 191:211–215

    Google Scholar 

  25. Messer JG, Kilbarger AK, Erikson KM, Kipp DE (2009) Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 45:972–979

    Article  PubMed  CAS  Google Scholar 

  26. Zarjou A, Jeney V, Arosio P, Poli M, Zavaczki E, Balla G, Balla J (2010) Ferritin-ferroxidase activity: a potent inhibitor of osteogenesis. J Bone Miner Res 25:164–172

    Google Scholar 

  27. Guggenbuhl P, Filmon R, Mabilleau G, Basle MF, Chappard D (2008) Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism 57:903–910

    Article  PubMed  CAS  Google Scholar 

  28. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, Lee IS, Nagai K (2002) Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem Biophys Res Commun 292:94–101

    Article  PubMed  CAS  Google Scholar 

  29. Tsay J, Yang Z, Ross FP, Cunningham-Rundles S, Lin H, Coleman R, Mayer-Kuckuk P, Doty SB, Grady RW, Giardina PJ, Boskey AL, Vogiatzi MG (2010) Bone loss due to iron overload in a murine model: importance of oxidative stress. Blood 116:2582–2589

    Google Scholar 

  30. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  PubMed  CAS  Google Scholar 

  31. Edwards CM, Mundy GR (2008) Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci 5:263–272

    PubMed  CAS  Google Scholar 

  32. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, Takebe G, Takahashi K, Nishihira J, Izumi H, Sakamoto W (2004) Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197:93–100

    Article  PubMed  CAS  Google Scholar 

  33. Morabito N, Russo GT, Gaudio A, Lasco A, Catalano A, Morini E, Franchina F, Maisano D, La Rosa M, Plota M, Crifo A, Meo A, Frisina N (2007) The “lively” cytokines network in beta-Thalassemia Major-related osteoporosis. Bone 40:1588–1594

    Article  PubMed  CAS  Google Scholar 

  34. Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, La Rosa M, Guarino R, Meo A, Frisina N (2004) Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle. J Bone Miner Res 19:722–727

    Article  PubMed  CAS  Google Scholar 

  35. Mahachoklertwattana P, Sirikulchayanonta V, Chuansumrit A, Karnsombat P, Choubtum L, Sriphrapradang A, Domrongkitchaiporn S, Sirisriro R, Rajatanavin R (2003) Bone histomorphometry in children and adolescents with beta-thalassemia disease: iron-associated focal osteomalacia. J Clin Endocrinol Metab 88:3966–3972

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the Société Française de Rhumatologie (SFR) and the Région Bretagne (MD).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Guggenbuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guggenbuhl, P., Fergelot, P., Doyard, M. et al. Bone status in a mouse model of genetic hemochromatosis. Osteoporos Int 22, 2313–2319 (2011). https://doi.org/10.1007/s00198-010-1456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1456-2

Keyword

Navigation