Skip to main content
Log in

Osteoporosis: disease severity and consequent fracture management

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Osteoporosis is a systemic skeletal disease responsible for the high incidence of fractures in older subjects, particularly in postmenopausal women. The increasing prevalence with population ageing and prolonged life expectancy raises the rates of associated morbidity, loss of independence, and mortality. BMD and previous fracture history are two main risk factors associated with osteoporosis such that the presence of prior fractures can predict future fractures. Strontium ranelate is an agent developed for the management of postmenopausal osteoporosis, demonstrated to reduce vertebral, nonvertebral, major nonvertebral, and hip fractures. It has been demonstrated to be effective for a broad spectrum of patients, including women with osteopenia, osteoporosis, and severe disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siris S, Miller PD, Barrett-Connor E (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women. Results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    Article  CAS  PubMed  Google Scholar 

  2. Consensus development conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94(6):646–650

    Article  Google Scholar 

  3. Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7(2):221–227

    Article  CAS  PubMed  Google Scholar 

  4. Cooper (1997) The crippling consequences of fractures and their impact on quality of life. AM J Med 103(2):12S–19S

    Article  CAS  PubMed  Google Scholar 

  5. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  CAS  PubMed  Google Scholar 

  6. Kanis JA, and the WHO Study Group (1994) Assessment of fracture risk and its application to screening for post-menopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4:368–381

    Article  Google Scholar 

  7. Kanis JA, Melton LJ III, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

  8. US Department of Health and Human Services (2004) Bone health and osteoporosis: a report of the surgeon general. Rockville, MD

    Google Scholar 

  9. van StaaTP D, EM LHG, Cooper C (2001) Epidemiology of fractures in Wales and England. Bone 29:517–522

    Article  Google Scholar 

  10. Cooper C, Harvey N, Dennison E (2008) Worldwide epidemiology of osteoporotic fractures. In innovation in skeletal medicine: 95–112. Rizzoli and Reginster ed

  11. Cooper C, Atkinson EJ, Kotowicz M, O'Fallon WM, Melton LJ 3rd (1992) Secular trends in the incidence of postmenopausal vertebral fractures. Calcif Tissue Int 51(2):100–104

    Article  CAS  PubMed  Google Scholar 

  12. Dempster DW (2006) Anatomy and functions of the adult skeleton. In: Favus MJ, et al, eds. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research:7-11

  13. Chrischilles EA, Butler CD, Davis CS, Wallace RB (1991) A model of lifetime osteoporosis impact. Arch Intern Med 151:2026–2032

    Article  CAS  PubMed  Google Scholar 

  14. Lindsay R, Silverman S, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  CAS  PubMed  Google Scholar 

  15. Brown SA, Rosen CJ (2003) Osteoporosis. Med Clin North Am 87:1039–1063

    Article  PubMed  Google Scholar 

  16. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A, National Osteoporosis Guideline Group (2008) Case finding for the management of osteoporosis with FRAX—assessment and intervention thresholds for the UK. Osteoporos Int 19(10):1395–1408

    Article  CAS  PubMed  Google Scholar 

  17. available on www.shef.ac.uk/FRAX

  18. Sandhu SK, Nguyen ND, Center JR, Pocock NA, Eisman JA, Nguyen TV (2010) Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporos Int 21(5):863–871

    Article  CAS  PubMed  Google Scholar 

  19. Hosoi T, WHO FRAX(R) (2009) Usefulness and limitation of FRAX(R) in the practice of internal medicine. Clin Calcium 19(12):1749–1755

    PubMed  Google Scholar 

  20. Seeman E, Devogelaer JP, Lorenc R et al (2008) Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. J Bone Miner Res 23(3):433–438

    Article  CAS  PubMed  Google Scholar 

  21. Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Eng J Med 350(5):459–468

    Article  CAS  Google Scholar 

  22. Reginster JY, Seeman E, de Vernejoul MC et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    Article  CAS  PubMed  Google Scholar 

  23. Roux C, Reginster JY, Fechtenbaum J et al (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21(4):536–542

    Article  CAS  PubMed  Google Scholar 

  24. Bruyère O, Roux C, Badurski J et al (2007) Relationship between change in femoral neck bone mineral density and hip fracture incidence during treatment with strontium ranelate. Curr Med Res Opin 23(12):3041–3045

    Article  PubMed  Google Scholar 

  25. Reginster JY, Sarlet N, Lejeune E, Leonori L (2005) Strontium ranelate: a new treatment for postmenopausal osteoporosis with a dual mode of action. Curr Osteoporos Rep 3(1):30–34

    Article  PubMed  Google Scholar 

  26. Marie PJ (2005) Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int Suppl 1:S7–S10

    Article  Google Scholar 

  27. Marie PJ (2006) Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol Suppl 1:S11–S15

    Article  Google Scholar 

  28. Brennan TC, Rybchyn MS, Green W et al (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157(7):1291–1300

    Article  CAS  PubMed  Google Scholar 

  29. Neuprez A, Hiligsmann M, Scholtissen S, Bruyere O, Reginster JY (2008) Strontium ranelate: the first agent of a new therapeutic class in osteoporosis. Adv Ther 25(12):1235–1256

    Article  CAS  PubMed  Google Scholar 

  30. Ammann P, Shen V, Robin B et al (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    Article  CAS  PubMed  Google Scholar 

  31. Recker R, Marin F, Ish-Shalom S et al (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res 24(8):1358–1368

    Article  CAS  PubMed  Google Scholar 

  32. Kendler DL, Adachi JD, Josse RG, Slosman DO (2009) Monitoring strontium ranelate therapy in patients with osteoporosis. Osteoporos Int 20(7):1101–1106

    Article  CAS  PubMed  Google Scholar 

  33. Sarkar S, Mitlak BH, Wong M, Stock JL, Black DM, Harper KD (2002) Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 17(1):1–10

    Article  CAS  PubMed  Google Scholar 

  34. Watts NB, Geusens P, Barton IP, Felsenberg D (2005) Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res 20:2097–2104

    Article  PubMed  Google Scholar 

  35. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment antiresorptive drugs. Am J Med 112(4):281–289

    Article  CAS  PubMed  Google Scholar 

  36. Delmas P, Seeman E (2004) Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 34:599–604

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

C.C. performs consulting and lecturing with Servier, MSD, Lilly, Alliance, Amgen, and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, C. Osteoporosis: disease severity and consequent fracture management. Osteoporos Int 21 (Suppl 2), 425–429 (2010). https://doi.org/10.1007/s00198-010-1251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1251-0

Keywords

Navigation