Skip to main content
Log in

Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Although both spinal cord injury (SCI) and sciatic neurectomy (NX) can cause osteopaenia in young rats, the effects of these two injuries on cortical and cancellous bone may differ. The objective of this study was to compare the effects of SCI and NX on bone weight, bone material property, bone mass, bone geometry, trabecular microarchitecture, mechanical strength and bone turnover in young rats.

Materials and methods

Thirty six-week-old male Sprague-Dawley rats were randomised into three groups (10 per group): SCI, bilateral sciatic NX and untreated control (CON). All rats were killed on day 21. Bone mineral density (BMD) was studied using dual-energy X-ray absorptiometry (DXA). At death, the right proximal tibial metaphysis and the fourth lumbar vertebra were examined for bone structural geometric analysis by micro-computed tomography (CT) and then processed for histomorphometry to assess bone cell activity. Serum N-terminal telopeptide of type I collagen (NTX) and osteocalcin (OC) levels were analysed by enzyme-linked immunosorbent assay (ELISA). Biomechanical strength properties of the femur and humerus were measured by three-point bending, and the third lumbar vertebra and the proximal end of tibia were tested by compression.

Results

BMD in the sublesional areas of SCI rats was significantly lower than that of NX rats (proximal tibia, 0.176±0.018 g/cm2 vs. 0.224±0.015 g/cm2, P<0.001). Bone volume (BV/TV), trabecular number (Tb.N) and thickness (Tb.Th) in the tibial second spongiosa of SCI rats were significantly less than those in NX rats (BV/TV: 7.15±1.18% vs. 12.32±1.83%, P<0.001; Tb.N: 1.23±0.22 vs. 2.38±0.45, P<0.001; Tb.Th: 33.73±5.15 μm vs. 42.80±7.44 μm, P<0.01) and trabecular separation (Tb.Sp: 1,053.37±164.24 μm vs. 748.32±129.36 μm, P<0.01) was significantly greater than in NX rats. Furthermore, poorer trabecular connectivity was found in SCI rats than in NX rats (number of nodes, N.Nd/TV: 1.04±0.09 vs. 3.29±0.53; number of terminus, N.Tm/TV: 28.53±3.17 vs. 21.64±2.31, P<0.01). The bone formation rate of the tibial second spongiosa in SCI rats was significantly higher than in NX rats (2.06±0.13 vs. 1.53±0.09, P<0.001) and, also, the eroded surface in SCI rats was significantly higher than in NX rats (13.42±1.24 vs. 10.36±1.07, P<0.001). In addition, biomechanical tests showed that SCI rats had poorer biomechanical properties of the femur, proximal tibia and fourth lumbar vertebra than in NX rats. There were significantly higher levels of OC in SCI rats compared with NX rats (30.19±1.17 vs. 21.15±1.76, P<0.001). Also, serum NTX levels were significantly higher than in NX rats (51.60±2.61 vs. 33.85±1.93, P<0.001).

Conclusion

SCI caused more damage to bone mass, bone structure, biomechanical properties and bone metabolism than NX in young rats. This suggests that different mechanisms may underlie osteopaenia following SCI and NX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2
Fig. 3a–d
Fig. 4a,b

Similar content being viewed by others

References

  1. Kiratli BJ, Smith AE, Nauenberg T, Kallfelz CF, Perkash I (2000) Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 37(2):225–233

    CAS  PubMed  Google Scholar 

  2. Takata S, Yasui N (2001) Disuse osteoporosis. J Med Invest 48(3–4):147–156

    CAS  PubMed  Google Scholar 

  3. Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A (1995) Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33(11):669–673

    CAS  PubMed  Google Scholar 

  4. Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27(2):305–309

    Article  CAS  PubMed  Google Scholar 

  5. Finsen V, Indredavik B, Fougner KJ (1992) Bone mineral and hormone status in paraplegics. Paraplegia 30(5):343–347

    CAS  PubMed  Google Scholar 

  6. Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20(3):330–335

    Article  CAS  PubMed  Google Scholar 

  7. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5(8):843–850

    CAS  PubMed  Google Scholar 

  8. Maimoun L, Couret I, Micallef JP, Peruchon E, Mariano-Goulart D, Rossi M, Leroux JL, Ohanna F (2002) Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 51(8):958–963

    Article  CAS  PubMed  Google Scholar 

  9. Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R, McWhinney B, Hickman PE (1998) Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 83(2):415–422

    Article  CAS  PubMed  Google Scholar 

  10. Inoue M, Tanaka H, Moriwake T, Oka M, Sekiguchi C, Seino Y (2000) Altered biochemical markers of bone turnover in humans during 120 days of bed rest. Bone 26(3):281–286

    Article  CAS  PubMed  Google Scholar 

  11. Smith SM, Nillen JL, Leblanc A, Lipton A, Demers LM, Lane HW, Leach CS (1998) Collagen cross-link excretion during space flight and bed rest. J Clin Endocrinol Metab 83(10):3584–3591

    Article  CAS  PubMed  Google Scholar 

  12. Lueken SA, Arnaud SB, Taylor AK, Baylink DJ (1993) Changes in markers of bone formation and resorption in a bed rest model of weightlessness. J Bone Miner Res 8(12):1433–1438

    CAS  PubMed  Google Scholar 

  13. Jones LM, Legge M, Goulding A (2002) Intensive exercise may preserve bone mass of the upper limbs in spinal cord injured males but does not retard demineralisation of the lower body. Spinal Cord 40(5):230–235

    Article  CAS  PubMed  Google Scholar 

  14. Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17(2):180–192

    Article  PubMed  Google Scholar 

  15. Iwamoto J, Takeda T, Ichimura S, Sato Y, Yeh JK (2003) Comparative effects of orchidectomy and sciatic neurectomy on cortical and cancellous bone in young growing rats. J Bone Miner Metab 21(4):211–216

    PubMed  Google Scholar 

  16. Notoya K, Yoshida K, Tsukuda R, Taketomi S, Tsuda M (1996) Increase in femoral bone mass by ipriflavone alone and in combination with 1 alpha-hydroxyvitamin D3 in growing rats with skeletal unloading. Calcif Tissue Int 58(2):88–94

    Article  CAS  PubMed  Google Scholar 

  17. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610

    Article  CAS  PubMed  Google Scholar 

  18. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14(4):595–608

    Article  CAS  PubMed  Google Scholar 

  19. Jager I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746

    CAS  PubMed  Google Scholar 

  20. Glimcher MJ (1987) The nature of the mineral component of bone and the mechanism of calcification. Instr Course Lect 36:49–69

    CAS  PubMed  Google Scholar 

  21. Bauman WA, Zhong YG, Schwartz E (1995) Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 44(12):1612–1616

    Article  CAS  PubMed  Google Scholar 

  22. Bauman WA, Morrison NG, Spungen AM (2005) Vitamin D replacement therapy in persons with spinal cord injury. J Spinal Cord Med 28(3):203–207

    PubMed  Google Scholar 

  23. Kikuchi TA, Skowsky WR, El-Toraei I, Swerdloff R (1976) The pituitary-gonadal axis in spinal cord injury. Fertil Steril 27(10):1142–1145

    CAS  PubMed  Google Scholar 

  24. Naftchi NE, Viau AT, Sell GH, Lowman EW (1980) Pituitary-testicular axis dysfunction in spinal cord injury. Arch Phys Med Rehabil 61(9):402–405

    CAS  PubMed  Google Scholar 

  25. Nance PW, Shears AH, Givner ML, Nance DM (1985) Gonadal regulation in men with flaccid paraplegia. Arch Phys Med Rehabil 66(11):757–759

    CAS  PubMed  Google Scholar 

  26. Tsitouras PD, Zhong YG, Spungen AM, Bauman WA (1995) Serum testosterone and growth hormone/insulin-like growth factor-I in adults with spinal cord injury. Horm Metab Res 27(6):287–292

    Article  CAS  PubMed  Google Scholar 

  27. Hjeltnes N, De Groot P, Birkeland KI, Falch JA, Iversen PO (2005) Tetraplegic subjects have hyperleptinaemia with marked circadian variation. Clin Endocrinol (Oxf) 62(2):223–227

    Article  CAS  Google Scholar 

  28. Bugaresti JM, Tator CH, Silverberg JD, Szalai JP, Malkin DG, Malkin A, Tay SK (1992) Changes in thyroid hormones, thyroid stimulating hormone and cortisol in acute spinal cord injury. Paraplegia 30(6):401–409

    CAS  PubMed  Google Scholar 

  29. Bauman WA, Spungen AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43(6):749–756

    Article  CAS  PubMed  Google Scholar 

  30. Konttinen Y, Imai S, Suda A (1996) Neuropeptides and the puzzle of bone remodeling. State of the art. Acta Orthop Scand 67(6):632–639

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki A, Palmer G, Bonjour JP, Caverzasio J (1998) Catecholamines stimulate the proliferation and alkaline phosphatase activity of MC3T3-E1 osteoblast-like cells. Bone 23(3):197–203

    Article  CAS  PubMed  Google Scholar 

  32. Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD (1998) Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 22(4):295–299

    Article  CAS  PubMed  Google Scholar 

  33. Itzstein C, Cheynel H, Burt-Pichat B, Merle B, Espinosa L, Delmas PD, Chenu C (2001) Molecular identification of NMDA glutamate receptors expressed in bone cells. J Cell Biochem 82(1):134–144

    Article  CAS  PubMed  Google Scholar 

  34. Peet NM, Grabowski PS, Laketic-Ljubojevic I, Skerry TM (1999) The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation. FASEB J 13(15):2179–2185

    CAS  PubMed  Google Scholar 

  35. Sandhu HS, Herskovits MS, Singh IJ (1987) Effect of surgical sympathectomy on bone remodeling at rat incisor and molar root sockets. Anat Rec 219(1):32–38

    Article  CAS  PubMed  Google Scholar 

  36. Hill EL, Turner R, Elde R (1991) Effects of neonatal sympathectomy and capsaicin treatment on bone remodeling in rats. Neuroscience 44(3):747–755

    Article  CAS  PubMed  Google Scholar 

  37. Lundberg P, Lie A, Bjurholm A, Lehenkari PP, Horton MA, Lerner UH, Ransjo M (2000) Vasoactive intestinal peptide regulates osteoclast activity via specific binding sites on both osteoclasts and osteoblasts. Bone 27(6):803–810

    Article  CAS  PubMed  Google Scholar 

  38. Winding B, Wiltink A, Foged NT (1997) Pituitary adenylyl cyclase-activating polypeptides and vasoactive intestinal peptide inhibit bone resorption by isolated rabbit osteoclasts. Exp Physiol 82(5):871–886

    CAS  PubMed  Google Scholar 

  39. Leslie WD, Nance PW (1993) Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil 74(9):960–964

    CAS  PubMed  Google Scholar 

  40. Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am 83-A(8):1195–1200

    CAS  PubMed  Google Scholar 

  41. Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, Weinstein DA (1992) Osteoporosis after spinal cord injury. J Orthop Res 10(3):371–378

    Article  CAS  PubMed  Google Scholar 

  42. Szollar SM (1997) Osteoporosis in men with spinal cord injuries. West J Med 166(4):270

    CAS  PubMed  Google Scholar 

  43. Biering-Sorensen F, Bohr H, Schaadt O (1988) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26(5):293–301

    CAS  PubMed  Google Scholar 

  44. Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S (1993) Effect of “standing” on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil 74(1):73–78

    CAS  PubMed  Google Scholar 

  45. Muraki S, Yamamoto S, Ishibashi H, Horiuchi T, Hosoi T, Orimo H, Nakamura K (2004) Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int 15(9):724–728

    Article  PubMed  Google Scholar 

  46. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 59(7):954–962

    CAS  PubMed  Google Scholar 

  47. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22(5):445–454

    Article  CAS  PubMed  Google Scholar 

  48. Dempster DW (2000) The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 15(1):20–23

    Article  CAS  PubMed  Google Scholar 

  49. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10(3):231–239

    Article  CAS  PubMed  Google Scholar 

  50. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13(7):1175–1182

    Article  CAS  PubMed  Google Scholar 

  51. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37(6):594–597

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson A, Ohlsson C, Isaksson OG, Lindahl A, Isgaard J (1994) Hormonal regulation of longitudinal bone growth. Eur J Clin Nutr 48 Suppl 1:S150–S158; discussion S158–S160

    PubMed  Google Scholar 

  53. Strange-Vognsen HH, Arnbjerg J, Hannibal J (1997) Immunocytochemical demonstration of pituitary adenylate cyclase activating polypeptide (PACAP) in the porcine epiphyseal cartilage canals. Neuropeptides 31(2):137–141

    Article  CAS  PubMed  Google Scholar 

  54. Agadir M, Sevastik B, Sevastik JA, Svensson L (1989) Effects of intercostal nerve resection on the longitudinal rib growth in the growing rabbit. J Orthop Res 7(5):690–695

    Article  CAS  PubMed  Google Scholar 

  55. Popiela H (1976) In vivo limb tissue development in the absence of nerves: a quantitative study. Exp Neurol 53(1):214–226

    Article  CAS  PubMed  Google Scholar 

  56. Dietz FR (1989) Effect of denervation on limb growth. J Orthop Res 7(2):292–303

    Article  CAS  PubMed  Google Scholar 

  57. Dysart PS, Harkness EM, Herbison GP (1989) Growth of the humerus after denervation. An experimental study in the rat. J Anat 167:147–159

    CAS  PubMed  Google Scholar 

  58. Edoff K, Hellman J, Persliden J, Hildebrand C (1997) The developmental skeletal growth in the rat foot is reduced after denervation. Anat Embryol (Berl) 195(6):531–538

    Article  CAS  Google Scholar 

  59. Yeni YN, Brown CU, Norman TL (1998) Influence of bone composition and apparent density on fracture toughness of the human femur and tibia. Bone 22(1):79–84

    Article  CAS  PubMed  Google Scholar 

  60. Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ (1984) Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J Orthop Res 1(4):405–411

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-Y. Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, SD., Jiang, LS. & Dai, LY. Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos Int 17, 1552–1561 (2006). https://doi.org/10.1007/s00198-006-0165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0165-3

Keywords

Navigation