Skip to main content
Log in

Quantitative ultrasound calcaneus measurements: normative data for the Greek population

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Quantitative ultrasound (QUS) is a peripheral bone densitometry technique that is rapidly gaining in popularity, and is widely used worldwide for the assessment of skeletal status. This, however, generally occurs in the absence of adequate clinical guidelines. As accurate interpretation of the results and correct classification in individual fracture risk assessment are of great value, the present study was carried out to establish a reference database for calcaneal QUS measurements across age group and gender in Greece. A total of 1205 subjects (821 females and 384 males) from three age groups (409 children, 341 adults and 455 elderly) were recruited. QUS measurements were performed at the heel with the Sahara device, which measures broadband ultrasound attenuation (BUA) and speed of sound (SOS), and then combines these variables into a single parameter, the quantitative ultrasound index (QUI). Overall, gender-related differences were more pronounced among the elderly, while age-related differences were more pronounced among females. Elderly men had higher QUS parameters than women of peer age, but no major gender differences were observed in children and adults. In males, only BUA showed a variation with age, being higher in adult and elderly men compared to boys. On the other hand, all QUS parameters varied significantly with age in females, the general trends being mildly positive from childhood to adulthood, when peak levels were observed, and negative thereafter. The results for the Greek population were in the range reported previously for other populations, but some discrepancies were evident, probably resulting from ethno-specific characteristics and different QUS instrumentation. Importantly, using the manufacturer’s or the local database as the reference population for computing T-scores led to significantly different classification of subjects into conventional categories of risk. These data could be useful as a guide for comparing the results of individual studies, as well as for the assessment of Greek men and women at risk of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. National Institutes of Health (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 17:1–45

    Google Scholar 

  2. Melton LJ 3rd (1993) Hip fractures: a worldwide problem today and tomorrow. Bone 14:S1–8

    Google Scholar 

  3. Norris RJ (1992) Medical costs of osteoporosis. Bone 13:S11–16

    PubMed  Google Scholar 

  4. Melton LJ 3rd (1997) The prevalence of osteoporosis. J Bone Miner Res 12:1769–1771

    PubMed  Google Scholar 

  5. Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Jarvinen M (1999) Hip fractures in Finland between 1970 and 1997 and predictions for the future. Lancet 353:802–805

    Article  CAS  PubMed  Google Scholar 

  6. Gluer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 12:1280–1288

    CAS  PubMed  Google Scholar 

  7. Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  CAS  PubMed  Google Scholar 

  8. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Int Med 157:629–634

    Article  CAS  Google Scholar 

  9. Langton CM, Njeh CF, Hodgskinson R, Currey JD (1996) Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation. Bone 18:495–503

    Article  CAS  PubMed  Google Scholar 

  10. Faulkner KG, McClung MR, Coleman LJ, Kingston-Sandahl E (1994) Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporos Int 4:42–47

    CAS  PubMed  Google Scholar 

  11. Masud T, Francis RM (2000) The increasing use of peripheral bone densitometry. BMJ 321:396–398

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Rodriguez F, Mezquita-Raya P, Luna Jde D, Escobar-Jimenez F, Munoz-Torres M (2003) Performance of quantitative ultrasound in the discrimination of prevalent osteoporotic fractures in a bone metabolic unit. Bone 32:571–578

    Article  CAS  PubMed  Google Scholar 

  13. Frost ML, Blake GM, Fogelman I (2001) Quantitative ultrasound and bone mineral density are equally strongly associated with risk factors for osteoporosis. J Bone Miner Res 16:406–416

    CAS  PubMed  Google Scholar 

  14. Kaufman JJ, Einhorn TA (1993) Ultrasound assessment of bone. J Bone Miner Res 8:517–525

    CAS  PubMed  Google Scholar 

  15. Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK (eds) (1999) Quantitative ultrasound: assessment of osteoporosis and bone status, 1st edn. Martin Dunitz, London

    Google Scholar 

  16. Heaney RP, Kanis JA (1996) The interpretation and utility of ultrasound measurements of bone. Bone 18:491–492

    Article  CAS  PubMed  Google Scholar 

  17. Wuster C, Heilmann P, Pereira-Lima J, Schlegel J, Anstatt K, Soballa T (1998) Quantitative ultrasonometry (QUS) for the evaluation of osteoporosis risk: reference data for various measurement sites, limitations and application possibilities. Exp Clin Endocrinol Diabetes 106:277–288

    CAS  PubMed  Google Scholar 

  18. Paspati I, Galanos A, Lyritis GP (1998) Hip fracture epidemiology in Greece during 1977–1992. Calcif Tissue Int 62:542–547

    Article  CAS  PubMed  Google Scholar 

  19. Trichopoulou A, Georgiou E, Bassiakos Y, Lipworth L, Lagiou P, Proukakis C, Trichopoulos D (1997) Energy intake and monounsaturated fat in relation to bone mineral density among women and men in Greece. Prev Med 26:395–400

    Article  CAS  PubMed  Google Scholar 

  20. Moschandreas JA, Kafatos A (2002) Calcium intake in relation to diet and health indicators in Cretan primary and high school pupils, Greece. Int J Vitam Nutr Res 72:264–277

    CAS  PubMed  Google Scholar 

  21. Molyvda-Athanasopoulou E, Sioundas A, Hatziioannou K (2000) Dual energy X-ray absorptiometry reference data for Greek population. The impact on diagnosis of using various normal ranges for comparison. Eur J Radiol 36:36–40

    Article  CAS  PubMed  Google Scholar 

  22. Kanis JA, Gluer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11:192–202

    Article  CAS  PubMed  Google Scholar 

  23. Damilakis JE, Dretakis E, Gourtsoyiannis NC (1992) Ultrasound attenuation of the calcaneus in the female population: normative data. Calcif Tissue Int 51:180–183

    CAS  PubMed  Google Scholar 

  24. Hologic Incorporation (1997) SAHARA clinical bone sonometer. Clinical user’s guide. Hologic, Waltham, Mass.

  25. Bayer M, Kutilek S (1997) Ultrasound transmission through the os calcis in children: which side should we measure? Calcif Tissue Int 61:441–442

    Article  CAS  PubMed  Google Scholar 

  26. Chappard C, Berger G, Roux C, Laugier P (1999) Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos Int 9:318–326

    Article  CAS  PubMed  Google Scholar 

  27. Frost ML, Blake GM, Fogelman I (2000) Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound? Osteoporos Int 11:321–330

    Article  CAS  PubMed  Google Scholar 

  28. Frost ML, Blake GM, Fogelman I (1999) Contact quantitative ultrasound: an evaluation of precision, fracture discrimination, age-related bone loss and applicability of the WHO criteria. Osteoporos Int 10:441–449

    Article  CAS  PubMed  Google Scholar 

  29. Heldan de Moura Castro C, Medeiros Pinheiro M, Lucia Szejnfeld V (2000) Quantitative ultrasound of the calcaneus in Brazilian Caucasian women: normative data are similar to the manufacturer’s normal range. Osteoporos Int 11:923–928

    Article  PubMed  Google Scholar 

  30. Iki M, Kajita E, Mitamura S, Nishino H, Yamagami T, Nagahama N (1999) Precision of quantitative ultrasound measurement of the heel bone and effects of ambient temperature on the parameters. Osteoporos Int 10:462–467

    Article  CAS  PubMed  Google Scholar 

  31. Ross PD, Davis JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46:149–161

    CAS  PubMed  Google Scholar 

  32. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:S13–18

    Article  PubMed  Google Scholar 

  33. Njeh CF, Fuerst T, Diessel E, Genant HK (2001) Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 12:1–15

    Article  CAS  PubMed  Google Scholar 

  34. Cepollaro C, Agnusdei D, Gonnelli S, Martini G, Pondrelli C, Borracelli D, Palmieri R, Parisi G, Gennari C (1995) Ultrasonographic assessment of bone in normal Italian males and females. Br J Radiol 68:910–914

    CAS  PubMed  Google Scholar 

  35. Langton CM, Langton DK (1997) Male and female normative data for ultrasound measurement of the calcaneus within the UK adult population. Br J Radiol 70:580–585

    CAS  PubMed  Google Scholar 

  36. Moris M, Peretz A, Tjeka R, Negaban N, Wouters M, Bergmann P (1995) Quantitative ultrasound bone measurements: normal values and comparison with bone mineral density by dual X-ray absorptiometry. Calcif Tissue Int 57:6–10

    CAS  PubMed  Google Scholar 

  37. Pluskiewicz W (1998) Bone status assessed by quantitative ultrasound in healthy postmenopausal Polish women: normative data. Clin Rheumatol 17:40–43

    CAS  PubMed  Google Scholar 

  38. Schott AM, Hans D, Sornay-Rendu E, Delmas PD, Meunier PJ (1993) Ultrasound measurements on os calcis: precision and age-related changes in a normal female population. Osteoporos Int 3:249–254

    CAS  PubMed  Google Scholar 

  39. Truscott JG (1997) Reference data for ultrasonic bone measurement: variation with age in 2087 Caucasian women aged 16–93 years. Br J Radiol 70:1010–1016

    CAS  PubMed  Google Scholar 

  40. Wunsche K, Wunsche B, Fahnrich H, Mentzel HJ, Vogt S, Abendroth K, Kaiser WA (2000) Ultrasound bone densitometry of the os calcis in children and adolescents. Calcif Tissue Int 67:349–355

    Article  CAS  PubMed  Google Scholar 

  41. van den Bergh JP, Noordam C, Ozyilmaz A, Hermus AR, Smals AG, Otten BJ (2000) Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int 11:967–976

    Article  PubMed  Google Scholar 

  42. Landin-Wilhelmsen K, Johansson S, Rosengren A, Dotevall A, Lappas G, Bengtsson BA, Wilhelmsen L (2000) Calcaneal ultrasound measurements are determined by age and physical activity. Studies in two Swedish random population samples. J Intern Med 247:269–278

    Article  CAS  PubMed  Google Scholar 

  43. Adami S, Giannini S, Giorgino R, Isaia G, Maggi S, Sinigaglia L, Filipponi P, Crepaldi G, Di Munno O (2003) The effect of age, weight, and lifestyle factors on calcaneal quantitative ultrasound: the ESOPO study. Osteoporos Int 14:198–207

    PubMed  Google Scholar 

  44. Ishikawa K, Ohta T (1999) Radial and metacarpal bone mineral density and calcaneal quantitative ultrasound bone mass in normal Japanese women. Calcif Tissue Int 65:112–116

    Article  CAS  PubMed  Google Scholar 

  45. Kung AW, Tang GW, Luk KD, Chu LW (1999) Evaluation of a new calcaneal quantitative ultrasound system and determination of normative ultrasound values in southern Chinese women. Osteoporos Int 9:312–317

    Article  CAS  PubMed  Google Scholar 

  46. Hadji P, Hars O, Bock K, Albert U, Beckmann MW, Emons G, Schulz K (1999) Age changes of calcaneal ultrasonometry in healthy German women. Calcif Tissue Int 65:117–120

    Article  CAS  PubMed  Google Scholar 

  47. Thompson P, Taylor J, Fisher A, Oliver R (1998) Quantitative heel ultrasound in 3180 women between 45 and 75 years of age: compliance, normal ranges and relationship to fracture history. Osteoporos Int 8:211–214

    Article  CAS  PubMed  Google Scholar 

  48. Sosa M, Saavedra P, Munoz-Torres M, Alegre J, Gomez C, Gonzalez-Macias J, Guanabens N, Hawkins F, Lozano C, Martinez M, Mosquera J, Perez-Cano R, Quesada M, Salas E (2002) Quantitative ultrasound calcaneus measurements: normative data and precision in the Spanish population. Osteoporos Int 13:487–492

    Article  CAS  PubMed  Google Scholar 

  49. Pluskiewicz W, Drozdzowska B (1999) Ultrasonic measurement of the calcaneus in Polish normal and osteoporotic women and men. Bone 24:611–617

    Article  CAS  PubMed  Google Scholar 

  50. He YQ, Fan B, Hans D, Li J, Wu CY, Njeh CF, Zhao S, Lu Y, Tsuda-Futami E, Fuerst T, Genant HK (2000) Assessment of a new quantitative ultrasound calcaneus measurement: precision and discrimination of hip fractures in elderly women compared with dual X-ray absorptiometry. Osteoporos Int 11:354–360

    Article  CAS  PubMed  Google Scholar 

  51. Vogel JM, Wasnich RD, Ross PD (1988) The clinical relevance of calcaneus bone mineral measurements: a review. Bone Miner 5:35–58

    Article  CAS  PubMed  Google Scholar 

  52. Brukx LJ, Waelkens JJ (2003) Evaluation of the usefulness of a quantitative ultrasound device in screening of bone mineral density in children. Ann Hum Biol 30:304–315

    CAS  PubMed  Google Scholar 

  53. Saadi HF, Reed RL, Carter AO, Dunn EV, Qazaq HS, Al-Suhaili AR (2003) Quantitative ultrasound of the calcaneus in Arabian women: relation to anthropometric and lifestyle factors. Maturitas 44:215–223

    Article  CAS  PubMed  Google Scholar 

  54. Njeh CF, Hans D, Li J, Fan B, Fuerst T, He YQ, Tsuda-Futami E, Lu Y, Wu CY, Genant HK (2000) Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 11:1051–1062

    Article  CAS  PubMed  Google Scholar 

  55. Kanis JA, Melton LJ, 3rd., Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    CAS  PubMed  Google Scholar 

  56. Ikeda Y, Iki M, Morita A, Aihara H, Kagamimori S, Kagawa Y, Matsuzaki T, Yoneshima H, Marumo F (2002) Age-specific values and cutoff levels for the diagnosis of osteoporosis in quantitative ultrasound measurements at the calcaneus with SAHARA in healthy Japanese women: Japanese population-based osteoporosis (JPOS) study. Calcif Tissue Int 71:1–9

    Article  CAS  PubMed  Google Scholar 

  57. Hartl F, Tyndall A, Kraenzlin M, Bachmeier C, Guckel C, Senn U, Hans D, Theiler R (2002) Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study. J Bone Miner Res 17:321–330

    CAS  PubMed  Google Scholar 

  58. Hans D, Hartl F, Krieg MA (2003) Device-specific weighted T-score for two quantitative ultrasounds: operational propositions for the management of osteoporosis for 65 years and older women in Switzerland. Osteoporos Int 14:251–258

    CAS  PubMed  Google Scholar 

  59. Cheng S, Njeh CF, Fan B, Cheng X, Hans D, Wang L, Fuerst T, Genant HK (2002) Influence of region of interest and bone size on calcaneal BMD: implications for the accuracy of quantitative ultrasound assessments at the calcaneus. Br J Radiol 75:59–68

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Friesland Hellas. The authors would like to thank Maria Bletsa, Maria Rammata, and Anastasia Doulgeri, dietitians, Silia Sidossi, research assistant, and Antigoni Tsiafitsa, technician, for their valuable help in data collection and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Labros S. Sidossis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magkos, F., Manios, Y., Babaroutsi, E. et al. Quantitative ultrasound calcaneus measurements: normative data for the Greek population. Osteoporos Int 16, 280–288 (2005). https://doi.org/10.1007/s00198-004-1670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1670-x

Keywords

Navigation