Skip to main content
Log in

Bone mineral density and bone metabolism in Duchenne muscular dystrophy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Very few studies on bone mineral density and bone metabolism in Duchenne muscular dystrophy (DMD) have been reported. DMD is a severe, progressive muscular disease resulting in death at a young age. No specific therapies are available, but corticosteroids induce improvement and slower progression of the disease. However, long-term steroid therapy is a serious risk factor for osteoporosis. This study was aimed at evaluating bone mineral density and calciotropic hormones in a group of children affected by DMD, with or without steroid therapy. Bone mineral density was measured by DXA scan on lumbar spine and total body. Evaluation of calcium, phosphorus, bone turnover markers and calciotropic hormones was performed. Thirty-two children affected by DMD were studied: twenty-two on long-term prednisone therapy, ten not taking corticosteroids. Bone mineral density was lower than normal for age in all patients, and even lower in the group of steroid-treated children. Trunk and lower limb bone mineral densities were more reduced than upper limb mineral density, especially in the steroid-treated subjects. A marked reduction in spine bone mineral density, hypocalciuria, low 25-hydroxyvitamin D levels, and increased bone turnover markers were observed, and even these especially in the steroid-treated group. In conclusion, decreased bone mineral density and derangement of calcium metabolism were present in DMD patients, and were worsening during corticosteroid therapy. It is thus recommended that bone and mineral metabolism be carefully evaluated in patients with DMD, so that appropriate measures could be taken, especially now that chronic corticosteroid therapy is frequently given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Khan MA (1993) Corticosteroid therapy in Duchenne muscular dystrophy. J Neurol Sci 120:8–14

    CAS  PubMed  Google Scholar 

  2. Mendell JR, Moxley RT, Griggs RC et al. (1989) Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy. N Engl J Med 320:1592–1597

    CAS  PubMed  Google Scholar 

  3. Bonifati MD, Ruzza G, Bonometto P et al. (2000) A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve 23:1344–1347

    Article  CAS  PubMed  Google Scholar 

  4. Biggar WD, Gingras M, Fehlings DL, Harris VA, Steele CA (2001) Deflazacort treatment of Duchenne muscular dystrophy. J Pediatr 138:45–50

    Article  CAS  PubMed  Google Scholar 

  5. Consensus Development Conference V (1994) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 90:646–650

    Google Scholar 

  6. Favus MJ (ed) (1999) American Society for Bone and Mineral Research. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th edn. Lippincott Williams & Wilkins, Philadelphia

  7. Kanis JA (1994) Osteoporosis. Blackwell Science Oxford

  8. Baylink DJ (1983) Glucocorticoid-induced osteoporosis. N Engl J Med 309:306–308

    CAS  PubMed  Google Scholar 

  9. Chesney RW, Mazess RB, Rose P, Jax DK (1978) Effect of prednisone on growth and bone mineral content in childhood glomerular disease. Am J Dis Child 132:768–772

    Google Scholar 

  10. Jones G, Ponsonby AL, Smith BJ, Carmichael A (2000) Asthma, inhaled corticosteroid use, and bone mass in prepubertal children. J Asthma 37:603–611

    CAS  PubMed  Google Scholar 

  11. Naganathan V, Jones G, Nash P, Nicholson G, Eisman J, Sambrook PN (2000) Vertebral fracture risk with long-term corticosteroid therapy: prevalence and relation to age, bone density, and corticosteroid use. Arch Int Med 160:2917–2922

    Article  CAS  Google Scholar 

  12. Whalen RT, Carter DR (1988) Influence of physical activity on the regulation of bone density. J Biomech 21:825–837

    CAS  PubMed  Google Scholar 

  13. Slemenda WC, Miller JZ, Hui SL, Reister TK, Johnston CC Jr (1991) Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 6:1227–1233

    CAS  PubMed  Google Scholar 

  14. Slemenda WC, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC Jr (1994) Influences on skeletal mineralization in children and adolescents. Evidence for varying effects of sexual maturation and physical activity. J Pediatr 125:201–207

    CAS  PubMed  Google Scholar 

  15. Courteix D, Lesspessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 8:152–158

    CAS  PubMed  Google Scholar 

  16. Bailey DA (2000) Physical activity and bone mineral acquisition during adolescence. Osteoporos Int 11:S2–S3

    Article  PubMed  Google Scholar 

  17. Palmieri G, Bertorini TE, Griffin JW, Igarashi M, Karas JG (1996) Assessment of whole body composition with dual energy X-ray absorptiometry in Duchenne muscular dystrophy: correlation of lean body mass with muscle function. Muscle Nerve 19:777–779

    Article  CAS  PubMed  Google Scholar 

  18. Larson CM, Henderson RC (2000) Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop 20:71–74

    Article  CAS  PubMed  Google Scholar 

  19. Aparicio LF, Jurkovic M, DeLullo J (2002) Decreased bone density in ambulatory patients with Duchenne muscular dystrophy. J Pediatr Orthop 22:179–181

    Article  PubMed  Google Scholar 

  20. Chesney RW, Rose P, Mazess RB, DeLuca HF (1988) Long term follow-up of bone mineral status in children with renal disease. Pediatr Nephrol 2:22–26

    CAS  PubMed  Google Scholar 

  21. Harcke T (1999) DXA in the growing skeleton. In: Blake GM, Wahner HW, Fogelman I (eds) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice, 2nd edn. Martin Dunitz, London, pp 347–360

  22. Bianchi ML, Cimaz R, Bardare M et al. (2000) Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children. Arthr Rheum 43:1960–1966

    Article  CAS  Google Scholar 

  23. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    CAS  PubMed  Google Scholar 

  24. Boot AM, de Ridder MAJ, Pols HAP, Krenning EP, de Muinck Keizer-Schrama SMPF (1997) Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab 82:57–62

    CAS  PubMed  Google Scholar 

  25. Medical Research Council (1976) Aids to the investigation of peripheral nerve injuries. Her Majesty's Stationery Office, London

  26. Cornelio F, Dworzak F, Morandi L (1984) Therapeutic trials in Duchenne Muscular Dystrophy. Evaluation of the patients: proposal for a protocol. Ital J Neurol Sci Suppl 3:133–136

    Google Scholar 

  27. McDonald DG, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, Jardine P, Jones DH, Pike MG (2002) Fracture prevalence in Duchenne Muscular Dystrophy. Dev Med Child Neurol 44:695–698

    Article  PubMed  Google Scholar 

  28. Chabot G, Alos N, Brousseau Y, Dubé J, Delvin E, Filiatreult M, Vanasse M (2002) Osteoporosis and fractures in children with Duchenne muscular dystrophy treated with glucocorticoids. J Bone Miner Res 17:S213

    Google Scholar 

  29. Welten DC, Kemper HCG, Post GB et al. (1994) Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 9:1089–1096

    CAS  PubMed  Google Scholar 

  30. Garton MJ, Rein DM (1993) Bone mineral density of the hip and of the anteroposterior and lateral dimensions of the spine in men with rheumatoid arthritis. Arthr Rheum 36:22–228

    Google Scholar 

  31. Laan R, Buijs W, van Erning L et al. (1993) Differential effects of glucocorticoids on cortical appendicular and cortical vertebral bone mineral content. Calcif Tissue Int 52:5–9

    CAS  PubMed  Google Scholar 

  32. Bardare M, Bianchi ML, Furia M, Gandolini G, Cohen E, Montesano A (1991) Bone mineral metabolism in juvenile chronic arthritis: the influence of steroids. Clin Exp Rheumatol 9:29-31

    Google Scholar 

  33. Klein RG, Arnaud SB, Gallagher JC, DeLuca HF, Riggs BL (1977) Intestinal calcium absorption in exogenous hypercortisonism. Role of 25-hydroxyvitamin D and corticosteroid dose. J Clin Invest 60:253–259

    CAS  PubMed  Google Scholar 

  34. Adams JS, Lukert BP (1980) Effects of sodium restriction on45Ca and 22Na transduodenal flux in corticosteroid-treated rats. Miner Electrolyte Metab 4:216–226

    CAS  Google Scholar 

  35. Shultz TD, Kumar R (1987) Effect of cortisol on [3H]1,25-dihydroxy vitamin D3 uptake and 1,25-dihydroxy vitamin D3-induced DNA-dependent RNA polymerase activity in chick intestinal cells. Calcif Tissue Int 40:224–230

    CAS  PubMed  Google Scholar 

  36. Morris HA, Need AG, O'Loughlin PD, Horowitz M, Bridges A, Nordin BEC (1990) Malabsorption of calcium in corticosteroid-induced osteoporosis. Calcif Tissue Int 46:305–308

    CAS  PubMed  Google Scholar 

  37. Hahn TJ, Halstead LR, Teitelbaum SL, Hahn BH (1979) Altered mineral metabolism in glucocorticoid-induced osteoporosis. Effect of 25-hydroxyvitamin D administration. J Clin Invest 64:655–665

    CAS  PubMed  Google Scholar 

  38. Au WY (1976) Cortisol stimulation of parathyroid hormone secretion by rat parathyroid glands in organ culture. Science 66:664–669

    Google Scholar 

  39. Rosen HN, Dresner-Pollak R, Moses AC et al. (1994) Specificity of urinary excretion of cross-linked N-telopeptides of type I collagen as a marker of bone turnover. Calcif Tissue Int 54:26–29

    CAS  PubMed  Google Scholar 

  40. Buyse G, Proesmans W, Ecckels R et al. (1999) Bone metabolism in ambulant children with Duchenne muscular dystrophy. Neuromuscul Disord 9:483–484

    Google Scholar 

  41. Vestergaard P, Glerup H, Steffensen BF, Rejnmark L, Rahbek J, Mosekilde L (2001) Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. J Rehabil Med 33:150–155

    Article  CAS  PubMed  Google Scholar 

  42. Talim B, Malaguti C, Gnudi S, Politano L, Merlini M (2002) Vertebral compression in Duchenne muscular dystrophy following deflazacort. Neuromuscul Disord 12:294–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Bianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, M.L., Mazzanti, A., Galbiati, E. et al. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int 14, 761–767 (2003). https://doi.org/10.1007/s00198-003-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-003-1443-y

Keywords

Navigation