Skip to main content
Log in

The structure of shock waves propagating through heavy noble gases: temperature dependence

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The structure of planar shock waves propagating through argon, xenon, and krypton is calculated using the direct simulation Monte Carlo method for Mach numbers 2, 5, and 10. The upstream temperature considered in the present paper varies from 30 to 8000 K, depending on the gas species and Mach number. Both quantum and classical approaches to the intermolecular collisions based on ab initio potential are used. The distributions of density and temperature inside the shock wave are reported. The density slope is calculated as a function of the upstream temperature and Mach number with the numerical error less than \(0.5\%\). The dependence of the density slopes on the upstream temperature is studied. It is shown that the slope behaviors of the heavy gases are qualitatively similar to each other, but they are completely different from those for helium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. Arch. Ration. Mech. Anal. 2, 617–642 (1953)

    MathSciNet  MATH  Google Scholar 

  2. Muckenfuss, C.: Some aspects of shock structure according to the bimodal model. Phys. Fluids 5, 1325–1336 (1962). https://doi.org/10.1063/1.1706528

    Article  Google Scholar 

  3. Ohwada, T.: Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5, 217–234 (1993). https://doi.org/10.1063/1.858777

    Article  MathSciNet  MATH  Google Scholar 

  4. Koura, K.: Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: nitrogen shock wave. Phys. Fluids 9, 3543–3549 (1997). https://doi.org/10.1063/1.869462

    Article  Google Scholar 

  5. Elizarova, T., Shirokov, I., Montero, S.: Numerical simulation of shock-wave structure for argon and helium. Phys. Fluids 17, 068101 (2005). https://doi.org/10.1063/1.1921267

    Article  MATH  Google Scholar 

  6. Stefanov, S.: On DSMC calculations of rarefied gas flows with small number of particles in cells. SIAM J. Sci. Comput. 33, 677–702 (2011). https://doi.org/10.1137/090751864

    Article  MathSciNet  MATH  Google Scholar 

  7. Norman, P., Valentini, P., Schwartzentruber, T.: GPU-accelerated classical trajectory calculation direct simulation Monte Carlo applied to shock waves. J. Comput. Phys. 247, 153–167 (2013). https://doi.org/10.1016/j.jcp.2013.03.060

    Article  MathSciNet  MATH  Google Scholar 

  8. Bird, G.A.: Aspects of the structure of strong shock waves. Phys. Fluids 13, 1172–1177 (1970). https://doi.org/10.1063/1.1693047

    Article  Google Scholar 

  9. Bird, G.A.: The DSMC Method. Create Space Independent Publishing Platform, Scotts Valley (2013)

    Google Scholar 

  10. Dodulad, O.I., Tcheremissine, F.G.: Computation of a shock wave structure in monatomic gas with accuracy control. Comput. Math. Math. Phys. 53, 827–844 (2013). https://doi.org/10.1134/S0965542513060055

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruno, D., Frezzotti, A., Ghiroldi, G.P.: Oxygen transport properties estimation by classical trajectory-direct simulation Monte Carlo. Phys. Fluids 27, 057 101 (2015). https://doi.org/10.1063/1.4921157

    Article  Google Scholar 

  12. Malkov, E., Bondar, Y.A., Kokhanchik, A., Poleshkin, S., Ivanov, M.: High-accuracy deterministic solution of the Boltzmann equation for the shock wave structure. Shock Waves 25, 387–397 (2015). https://doi.org/10.1007/s00193-015-0563-6

    Article  Google Scholar 

  13. Sharipov, F., Dias, C.F.: Ab initio simulation of planar shock waves. Comput. Fluids 150, 115–122 (2017). https://doi.org/10.1016/j.compfluid.2017.04.002

    Article  MathSciNet  MATH  Google Scholar 

  14. Sharipov, F., Dias, C.F.: Structure of planar shock waves in gaseous mixtures based on ab initio direct simulation. Eur. J. Mech. B Fluids 72, 251–263 (2018). https://doi.org/10.1016/j.euromechflu.2018.05.014

    Article  MathSciNet  MATH  Google Scholar 

  15. Sharipov, F., Dias, C.F.: Temperature dependence of shock wave structure in helium and neon. Phys. Fluids 31, 037 109 (2019). https://doi.org/10.1063/1.5088556

    Article  Google Scholar 

  16. Cowan, G.R., Hornig, D.F.: The experimental determination of the thickness of a shock front in a gas. J. Chem. Phys. 18, 1008–1018 (1950). https://doi.org/10.1063/1.1747845

    Article  Google Scholar 

  17. Greene, E.F., Cowan, G.R., Hornig, D.F.: The thickness of shock fronts in argon and nitrogen and rotational heat capacity lags. J. Chem. Phys. 19, 427–434 (1951). https://doi.org/10.1063/1.1748241

    Article  Google Scholar 

  18. Robben, F., Talbot, L.: Measurement of shock wave thickness by the electron beam fluorescence method. Phys. Fluids 9, 633–643 (1966). https://doi.org/10.1063/1.1761728

    Article  Google Scholar 

  19. Schmidt, B.: Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39, 361–373 (1969). https://doi.org/10.1017/S0022112069002229

    Article  Google Scholar 

  20. Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by absorption of an electron beam. J. Fluid Mech. 74, 497–513 (1976). https://doi.org/10.1017/S0022112076001912

    Article  Google Scholar 

  21. Linzer, M., Hornig, D.: Structure of shock fronts in argon and nitrogen. Phys. Fluids 6, 1661–1668 (1963). https://doi.org/10.1063/1.1711007

    Article  Google Scholar 

  22. Moore, A.S., Lazarus, J., Hohenberger, M., Robinson, J.S., Gumbrell, E.T., Dunne, M., Smith, R.A.: Investigating the astrophysical applicability of radiative and non-radiative blast wave structure in cluster media. Astrophys. Space Sci. 307, 139–145 (2007). https://doi.org/10.1007/s10509-006-9266-x

    Article  Google Scholar 

  23. González, M., Stehlé, C., Audit, E., Busquet, M., Rus, B., Thais, F., Acef, O., Barroso, P., Bar-Shalom, A., Bauduin, D., Kozlova, M., Lery, T., Madouri, A., Mocek, T., Polan, J.: Astrophysical radiative shocks: from modeling to laboratory experiments. Laser Part. Beams 24, 535–540 (2006). https://doi.org/10.1017/S026303460606071X

    Article  Google Scholar 

  24. Hanley, H.: The viscosity and thermal conductivity coefficients of dilute argon, krypton, and xenon. J. Phys. Chem. Ref. Data 2, 619–642 (1973). https://doi.org/10.1063/1.3253128

    Article  Google Scholar 

  25. Murthy, M.K., Ramachandra, S.M.: Ionizing shock waves in monatomic gases through a kinetic theory approach. Acta Astronaut. 2, 367–389 (1975). https://doi.org/10.1016/0094-5765(75)90056-9

    Article  Google Scholar 

  26. Chubb, D.L.: Ionizing shock structure in a monatomic gas. Phys. Fluids 11, 2363–2376 (1968). https://doi.org/10.1063/1.1691826

    Article  Google Scholar 

  27. Rodriguez, R., Gil, J.M., Espinosa, G., Florido, R., Rubiano, J.G., Mendoza, M.A., Martel, P., Minguez, E., Symes, D.R., Hohenberger, M., Smith, R.A.: Determination and analysis of plasma parameters for simulations of radiative blast waves launched in clusters of xenon and krypton. Plasma Phys. Control. Fusion 54, 045012 (2012). https://doi.org/10.1088/0741-3335/54/4/045012

  28. Rodriguez, R., Gil, J.M., Espinosa, G., Florido, R., Mendoza, M.A., Martel, P., Minguez, E., Symes, D.R., Hohenbergerd, M., Smith, R.A.: Determination and analysis of plasma radiative properties for numerical simulations of laboratory radiative blast waves launched in xenon clusters. J. Spectrosc. Dyn. 3, 17 (2013)

    Google Scholar 

  29. Matthew, M., Steinwandel, J.: An experimental-study of argon condensation in cryogenic shock-tubes. J. Aerosol. Sci. 14, 755–763 (1983). https://doi.org/10.1016/0021-8502(83)90059-9

    Article  Google Scholar 

  30. Sharipov, F.: Modelling of transport phenomena in gases based on quantum scattering. Phys. A 508, 797–805 (2018). https://doi.org/10.1016/j.physa.2018.05.129

    Article  MathSciNet  Google Scholar 

  31. Newell, D.B., Cabiati, F., Fischer, J., Fujii, K., Karshenboim, S.G., Margolis, H.S., de Mirandes, E., Mohr, P.J., Nez, F., Pachucki, K., Quinn, T.J., Taylor, B.N., Wang, M., Wood, B.M., Zhang, Z.: The CODATA 2017 values of \(h\), \(e\), \(k\), and \(N_A\) for the revision of the SI. Metrologia 55, L13–L16 (2018). https://doi.org/10.1088/1681-7575/aa950a

    Article  Google Scholar 

  32. Sharipov, F., Benites, V.: Transport coefficients of argon and its mixtures with helium and neon at low density based ab initio potentials. Fluid Phase Equilib. 498, 23–32 (2019). https://doi.org/10.1016/j.fluid.2019.06.010

    Article  Google Scholar 

  33. Jäger, B., Hellmann, R., Bich, E., Vogel, E.: State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas. J. Chem. Phys. 144, 114 304 (2016). https://doi.org/10.1063/1.4943959

    Article  Google Scholar 

  34. Hellmann, R., B, J., Bich, E.: State-of-the-art ab initio potential energy curve for the xenon atom pair and related spectroscopic and thermophysical properties. J. Chem. Phys. 147, 034 304 (2017). https://doi.org/10.1063/1.4994267

    Article  Google Scholar 

  35. Kandula, D.Z., Gohle, C., Pinkert, T.J., Ubachs, W., Eikema, K.S.E.: Extreme ultraviolet frequency comb metrology. Phys. Rev. Lett. 105, 063001 (2010). https://doi.org/10.1103/PhysRevLett.105.063001

    Article  Google Scholar 

  36. Saloman, E.B., Sansonetti, C.J.: Wavelengths, energy level classifications, and energy levels for the spectrum of neutral neon. J. Phys. Chem. Ref. Data 33, 1113–1158 (2007). https://doi.org/10.1063/1.1797771

    Article  Google Scholar 

  37. Velchev, I., Hogervorst, W., Ubachs, W.: Precision VUV spectroscopy of ArI at 105 nm. J. Phys. B At. Mol. Opt. Phys. 32, L511–L516 (1999). https://doi.org/10.1088/0953-4075/32/17/105

    Article  Google Scholar 

  38. Saloman, E.B.: Energy levels and observed spectral lines of krypton, Kr I through Kr XXXVI. J. Phys. Chem. Ref. Data 36, 215–386 (2007). https://doi.org/10.1063/1.2227036

    Article  Google Scholar 

  39. Saloman, E.B.: Energy levels and observed spectral lines of xenon, Xe I through Xe LIV. J. Phys. Chem. Ref. Data 33, 765–921 (2007). https://doi.org/10.1063/1.1649348

    Article  Google Scholar 

  40. Lideed, D.R.: Handbook of Chemistry and Physics, 85th edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  41. Sharipov, F.: Rarefied Gas Dynamics. Fundamentals for Research and Practice. Wiley-VCH, Berlin (2016). https://doi.org/10.1002/9783527685523

    Book  Google Scholar 

  42. Meija, J., Coplen, T.B., Berglund, M., Brand, W.A., De Bievre, P., Groning, M., Holden, N.E., Irrgeher, J., Loss, R.D., Walczyk, T., Prohaska, T.: Isotopic composition of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 88, 293–306 (2016). https://doi.org/10.1515/pac-2015-0503

    Article  Google Scholar 

  43. Sharipov, F.: Gaseous mixtures in vacuum systems and microfluidics. J. Vac. Sci. Technol. A 31, 050 806 (2013). https://doi.org/10.1116/1.4808496

    Article  Google Scholar 

  44. Sharipov, F., Cumin, L.M.G., Kalempa, D.: Plane Couette flow of binary gaseous mixture in the whole range of the Knudsen number. Eur. J. Mech. B Fluids 23, 899–906 (2004). https://doi.org/10.1016/j.euromechflu.2004.03.002

    Article  MathSciNet  MATH  Google Scholar 

  45. Sharipov, F.: Influence of quantum intermolecular interaction on internal flows of rarefied gases. Vacuum 156, 146–153 (2018). https://doi.org/10.1016/j.vacuum.2018.07.022

    Article  Google Scholar 

  46. Sharipov, F., Strapasson, J.L.: Direct simulation Monte Carlo method for an arbitrary intermolecular potential. Phys. Fluids 24, 011 703 (2012). https://doi.org/10.1063/1.3676060

    Article  Google Scholar 

  47. Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company, Amsterdam (1972)

    Google Scholar 

  48. Joachain, J.: Quantum Collision Theory. North-Holland Publishing Company, Amsterdam (1975)

    Google Scholar 

  49. Sharipov, F., Benites, V.: Transport coefficients of helium-neon mixtures at low density computed from ab initio potentials. J. Chem. Phys. 147, 224 302 (2017). https://doi.org/10.1063/1.5001711

    Article  Google Scholar 

  50. Jäger, B., Hellmann, R., Bich, E., Vogel, E.: Ab initio pair potential energy curve for the argon atom pair and thermophysical properties of the dilute argon gas. I. Argon–argon interatomic potential and rovibrational spectra. Mol. Phys. 107, 2181–2188 (2009). https://doi.org/10.1080/00268970903213305. erratum in Mol. Phys. 108, 105 (2010)

    Article  Google Scholar 

  51. Patkowski, K., Szalewicz, K.: Argon pair potential at basis set and excitation limits. J. Chem. Phys. 133, 094 304 (2010). https://doi.org/10.1063/1.3478513

    Article  Google Scholar 

  52. Sharipov, F., Strapasson, J.L.: Ab initio simulation of transport phenomena in rarefied gases. Phys. Rev. E 86, 031130 (2012). https://doi.org/10.1103/PhysRevE.86.031130

    Article  Google Scholar 

  53. Ferreira, A.G.M., Lobo, L.Q.: The sublimation of argon, krypton, and xenon. J. Chem. Thermodyn. 40, 1621–1626 (2008). https://doi.org/10.1016/j.jct.2008.07.023

    Article  Google Scholar 

Download references

Acknowledgements

F.Sh. acknowledges the Brazilian Agency CNPq for the support of his research, Grant 304831/2018-2. F.C.D. thanks the Brazilian Agency CAPES for her Ph.D. Scholarship. The calculations were carried out at Centro Nacional de Supercomputação (CESUP) of Federal University of Rio Grande do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sharipov.

Additional information

Communicated by S. O’Byrne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on work that was presented at the 32nd International Shock Wave Symposium, Singapore, July 14–July 19, 2019.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, F.C., Sharipov, F. The structure of shock waves propagating through heavy noble gases: temperature dependence. Shock Waves 31, 609–617 (2021). https://doi.org/10.1007/s00193-020-00965-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00965-w

Keywords

Navigation