Skip to main content
Log in

Low Mach, compressibility, and finite size effects of localized uniform heat sources in a gas

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The temporal evolution of the initial shock front and the low Mach regime produced behind the front due to the sudden introduction of a spherical, finite-size, low Biot number, uniformly heated energy source in a variable property gas is investigated. While the sphere is of physical interest, analogous problems of a uniformly heated infinitely long cylindrical wire and an infinite plate are also studied. Compressibility, finite-size, and nonlinear heating effects are studied without constraining the temperature of the source. Shortly after the energy source is introduced, compressibility is significant and a strong shock wave forms which weakens as it moves away from the source eventually becoming an acoustic wave. Behind it, fluid motion occurs at a much lower speed (low Mach regime), where the resulting nonlinear heating problem is solved analytically using the method of homotopy perturbation expansion leading to weak decoupling of finite-size effects and nonlinear heating effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The natural acoustic time scale associated with this problem is \(R/a_\infty \).

  2. Note that the exponents of \(\frac{2}{3}\) and \(-\frac{1}{3}\) in Eqs. (10) and (11) arise from the exponent of \(\frac{2}{3}\) in the assumed power law for \(\mu (T_g)\).

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, Mineola (1965)

    MATH  Google Scholar 

  2. Aronson, D.G.: Regularity of flows in porous media: a survey. In: Ni, W.-M., Peletier, L.A., Serrin, J. (eds.) Nonlinear Diffusion Equations and Their Equilibrium States, pp. 35–49. Springer, New York (1988)

    Chapter  Google Scholar 

  3. Articolo, G.A.: PDEs and BVPs with Maple, 2nd edn. Academic Press, New York (2009)

    MATH  Google Scholar 

  4. Baddour, N.: Application of the generalized shift operator to the Hankel transform. SpringerPlus 3, 246 (2014)

    Article  Google Scholar 

  5. Biazar, J., Ghaznavi, H.: Convergence of the HPM for partial differential equations. Nonlinear Anal. Real World Appl. 10, 2633–2640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  7. Cuzzi, J., Hogan, R., Paque, J., Dobrovolskis, A.: Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001)

    Article  Google Scholar 

  8. Davies, B.: Integral Transforms and Their Applications. Texts in Applied Mathematics, 3rd edn. Springer, New York (2002)

    Book  Google Scholar 

  9. Devenish, B.J., Bartello, P., Brenguier, J.L., Collins, L., Grabowski, W.W., IJzermans, R.A., Malinowski, S.P., Reeks, M.W., Vassilicos, J.C., Wang, L.P., Warhaft, Z.: Droplet growth in warm turbulent clouds. Q. J. R. Met. Soc. 138, 1401–1429 (2012)

    Article  Google Scholar 

  10. Ganguli, S.: Computational Analysis of Canonical Problems Arising in the Interaction of Heated Particles and a Fluid. Ph.D. thesis, Stanford University, Stanford, CA 94305 (2018)

  11. Ganguli, S., Amiroudine, S.: Numerical modelling of coupled heat and momentum transfer in a porous medium saturated by a supercritical fluid. Comput. Fluids 84, 46–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganguli, S., Lele, S.: Drag of spherical particles in a periodic lattice: heat transfer, buoyancy and non-Boussinesq effects. Bull. Am. Phys. Soc. 61 (2016)

  13. Ganguli, S., Lele, S.: Importance of variable density and non-Boussinesq effects on the drag of spherical particles. Bull. Am. Phys. Soc. 62 (2017)

  14. Ganguli, S., Lele, S.K.: Drag of a heated sphere at low Reynolds numbers in the absence of buoyancy. J. Fluid Mech. 869, 264–291 (2019). https://doi.org/10.1017/jfm.2019.187

    Article  MathSciNet  MATH  Google Scholar 

  15. Graves, R.E., Argrow, B.: Bulk viscosity: past to present. J. Thermophys. Heat Transf. 13, 337–342 (1999)

    Article  Google Scholar 

  16. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int. J. Non Linear Mech. 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  18. He, J.H.: Homotopy perturbation method: a new non-linear analytical technique. Appl. Math. Comput. 135, 73–79 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Hilsenrath, J.: Tables of Thermodynamic and Transport Properties. National Bureau of Standards Circular 564. Reprinted by Pergamon Press (1960)

  20. Horwitz, J., Ganguli, S., Mani, A., Lele, S.: A correction procedure for thermally two-way coupled point-particles. Bull. Am. Phys. Soc. 62 (2017)

  21. Lagerstrom, P.: Laminar Flow Theory. Princeton University Press, Princeton (1964)

    MATH  Google Scholar 

  22. Lagerstrom, P., Cole, J., Trilling, L.: Problems in the Theory of Viscous Compressible Flows. Technical report, ONR - Caltech GALCIT (1949)

  23. McCourt, F.R., Beenakker, J.J., Köhler, W.E., Kuscer, I.: Non-Equilibrium Phenomena in Polyatomic Gases, Volume I: Dilute Gases; Volume II: Cross-Sections, Scattering and Rarefied Gases. Clarendon Press, Oxford (1990)

    Google Scholar 

  24. Necati Özişik, M.: BVPs of Heat Conduction. Dover Publications, Mineola (2002)

    Google Scholar 

  25. Noh, Y.M., Lee, H., Mueller, D., Lee, K., Shin, D., Shin, S., Choi, T.J., Choi, Y.J., Kim, K.R.: Investigation of the diurnal pattern of the vertical distribution of pollen in the lower troposphere using LIDAR. Atmos. Chem. Phys. 13, 7619–7629 (2013)

    Article  Google Scholar 

  26. Peeters, F., Kerimoglu, O., Straile, D.: Implications of seasonal mixing for phytoplankton production and bloom development. Theor. Ecol. 6, 115–129 (2013)

    Article  Google Scholar 

  27. Piessens, R.: The Transforms and Applications Handbook, chap. The Hankel Transform. Poularikas, A.D. (eds). CRC Press LLC, Boca Raton (2000)

  28. Sánchez, A.L., Jiménez-Álvarez, J.L., Liñán, A.: The coupling of motion and conductive heating of a gas by localized energy sources. SIAM J. Appl. Math. 63(3), 937–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sánchez-Tarifa, C., Crespo, A., Fraga, E.: A theoretical model for combustion of droplets in supercritical conditions and gas pockets. Astronaut. Acta 17, 685–692 (1972)

    Google Scholar 

  30. Sedov, L.: Propagation of Strong shock waves. Prikl. Mat. Mekh. 10, 241–250 (1946)

    Google Scholar 

  31. Taylor, G.: The formation of a blast wave by a very intense explosion. Part I. Theoretical discussion. Proc. R. Soc. Lond. A 201, 159–174 (1950)

    Article  MATH  Google Scholar 

  32. Taylor, G.: The formation of a blast wave by a very intense explosion. Part II. The atomic explosion of 1945. Proc. R. Soc. Lond. A 201, 175–186 (1950)

    Article  MATH  Google Scholar 

  33. Tenneti, S., Subramaniam, S.: Particle-resolved direct numerical simulation for gas-solid flow model development. Ann. Rev. Fluid Mech. 46, 199–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thompson, P.A.: Compressible-Fluid Dynamics. Advanced Engineering Series. McGraw-Hill Inc, New York (1960)

    Google Scholar 

  35. Titchmarsh, E.: Eigenfunction Expansions Associated with Second Order PDEs, vol. 1, 2nd edn. Clarendon Press, Oxford (1962)

    MATH  Google Scholar 

  36. Titchmarsh, E.: Introduction to the Theory of Fourier Integrals, 2nd edn. Clarendon Press, Oxford (1967)

    Google Scholar 

  37. Van Dyke, M.: Impulsive motion of an infinite plate in a viscous compressible fluid. J. Appl. Math. Phys. 3, 343 (1952)

    MathSciNet  MATH  Google Scholar 

  38. Wu, T.: On Problems of Heat Conduction in Compressible Fluids. Ph.D. thesis, California Institute of Technology (1952)

  39. Zeldovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High Temperature Hydrodynamics Phenomena. English Translation. Academic Press, New York (1967)

Download references

Acknowledgements

This work was supported by the United States Department of Energy through the Predictive Science Academic Alliance Program II (PSAAP II) at Stanford University under grant number DENA0002373-1. All numerical simulations were performed on the Certainty Cluster at the Center for Turbulence Research at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swetava Ganguli.

Additional information

Communicated by Sergio Pirozzoli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Fully compressible Navier–Stokes equations in cylindrical and Cartesian coordinates

The conservation equations for mass, momentum, and energy solved in the fully compressible Navier–Stokes [21, 34] simulations when the source of energy is an infinitely long cylindrical wire placed along the z-axis (stated in cylindrical coordinates) are, respectively,

$$\begin{aligned}&\displaystyle \frac{\partial \rho }{\partial t} + \frac{1}{r}\frac{\partial \left( r \rho u_r \right) }{\partial r} = 0 \end{aligned}$$
(45)
$$\begin{aligned}&\displaystyle \rho \left( \frac{\partial u_r}{\partial t} + u_r\frac{\partial u_r}{\partial r}\right) = - \frac{\partial p}{\partial r} + \frac{1}{r}\frac{\partial }{\partial r}\left[ 2\mu r\left( \frac{\partial u_r}{\partial r}\right) \right] \end{aligned}$$
(46)
$$\begin{aligned}&\displaystyle \rho C_v\left( \frac{\partial T_g}{\partial t} + u_r\frac{\partial T_g}{\partial r}\right) + \frac{p}{r}\frac{\partial \left( r u_r \right) }{\partial r} = \frac{1}{r}\frac{\partial }{\partial r} \left( r \kappa \frac{\partial T_g}{\partial r} \right) + \varPhi \end{aligned}$$
(47)

Here, \(\varPhi = \mu \left[ 2\left( \frac{\partial u_r}{\partial r}\right) ^2 - \frac{2}{3}\left( \frac{\partial u_r}{\partial r} + \frac{u_r}{r} \right) ^2\right] \) is the viscous dissipation function. Similarly, the equations when the energy source is an infinite hot plate placed along the yz-plane (stated in Cartesian coordinates) are,

$$\begin{aligned}&\displaystyle \frac{\partial \rho }{\partial t} + \frac{\partial \left( \rho u_x \right) }{\partial x} = 0 \end{aligned}$$
(48)
$$\begin{aligned}&\displaystyle \rho \left( \frac{\partial u_x}{\partial t} + u_x\frac{\partial u_x}{\partial x}\right) = - \frac{\partial p}{\partial x} + \frac{\partial }{\partial x}\left[ \frac{4\mu }{3}\left( \frac{\partial u_x}{\partial x}\right) \right] \end{aligned}$$
(49)
$$\begin{aligned}&\displaystyle \rho C_v\left( \frac{\partial T_g}{\partial t} + u_x\frac{\partial T_g}{\partial x}\right) + p\frac{\partial u_x}{\partial x} = \frac{\partial }{\partial x} \left( \kappa \frac{\partial T_g}{\partial x} \right) + \frac{4\mu }{3}\left( \frac{\partial u_x}{\partial x}\right) ^2 \end{aligned}$$
(50)

The equation of state is \(p = \rho R_g T_g\).

Fluid properties used in simulations

Simulations in this paper assume that the fluid is air and has a fixed Prandtl number (Pr) of 0.7. Air is assumed to behave like an ideal gas. For air, we have for the viscosity power law \(\mu _0 = 1.716 \times 10^{-5}\) kg/m s, \(T_{\infty } = 273\) K, and \(n = \frac{2}{3}\). Other quantities are: Nominal Particle Radius, \(R = 100\)\(\upmu \)m, Ambient Fluid Temperature, \(T_{\infty } = 273\) K, Ambient Dynamic Viscosity, \(\mu _{\infty } = 1.72 \times 10^{-5}\) Pa s, Ambient Density, \(\rho _{\infty } = 1.29\)\(\frac{\mathrm{kg}}{\mathrm{m}^3}\), Heat Capacity Ratio, \(\gamma = 1.4\), Isobaric Specific Heat Capacity, \(C_p = 1.005 \times 10^3\)\(\frac{\mathrm{J}}{\mathrm{kg K}}\), Isochoric Specific Heat Capacity, \(C_v = 0.717 \times 10^3\)\(\frac{\mathrm{J}}{\mathrm{kg K}}\), Prandtl Number, \(Pr = 0.7\), and Specific Ideal Gas Constant, \(R_g = 287.058\)\(\frac{\mathrm{J}}{\mathrm{kg K}}\). Other quantities used that can be derived from these fluid properties are: Ambient Thermal Conductivity, \(\kappa _{\infty } = \mu _{\infty } C_p/Pr = 2.46 \times 10^{-2}\)\(\frac{\mathrm{W}}{\mathrm{mK}}\), Ambient Kinematic Viscosity, \(\nu _{\infty } = \mu _{\infty }/\rho _{\infty } = 1.32 \times 10^{-5}\)\(\frac{\mathrm{m}^2}{\mathrm{s}}\), Ambient Thermometric Coefficient, \(\alpha _{\infty } = \kappa _{\infty }/\left( \rho _{\infty } C_v\right) = 2.972 \times 10^{-5}\)\(\frac{\mathrm{m}^2}{\mathrm{s}}\), Ambient Thermodynamic Pressure, \(p_{\infty } = \rho _{\infty }R_g T_{\infty } = 1.01 \times 10^{5}\) Pa, and Speed of Sound in the fluid, \(a_{\infty } = \sqrt{\gamma p_{\infty }/\rho _{\infty }} = \sqrt{\gamma R_g T_{\infty }} = 331.23\) m/s. The ratio of the diffusive time scale based on the thermometric coefficient and the acoustic time scales with the relevant length scale being the particle size is called the Peclet number (\(Pe_{\infty }\)). The nominal Peclet number is \(Pe_{\infty } = 1.25 \times 10^3\).

Perturbation equations in cylindrical coordinates

On substituting (8) into (45)–(47), and (4), we obtain, respectively,

$$\begin{aligned}&\displaystyle \frac{\partial s}{\partial t} + \frac{1}{r}\frac{\partial \left( r u \right) }{\partial r} = - \frac{1}{r}\frac{\partial \left( r u s \right) }{\partial r} \end{aligned}$$
(51)
$$\begin{aligned}&\begin{aligned}&\displaystyle \frac{\partial u}{\partial t} + \frac{a_{\infty }^2}{\gamma }\frac{\partial \omega }{\partial r} - 2\nu _{\infty }\left( 1+\theta \right) ^{2/3}\frac{1}{r}\frac{\partial }{\partial r}\left( r\frac{\partial u}{\partial r}\right) \\&\displaystyle \qquad = -s\frac{\partial u}{\partial t} - (1+s)u\frac{\partial u}{\partial r} + \frac{4}{3}\nu _{\infty }\left( 1+\theta \right) ^{-1/3}\left( \frac{\partial \theta }{\partial r}\right) \left( \frac{\partial u}{\partial r}\right) \end{aligned} \end{aligned}$$
(52)
$$\begin{aligned}&\begin{aligned}&\displaystyle \frac{\partial \theta }{\partial t} + \left( \gamma -1\right) \frac{1}{r}\frac{\partial \left( r u\right) }{\partial r} - \alpha _{\infty }\left( 1+\theta \right) ^{2/3}\frac{1}{r}\frac{\partial }{\partial r} \left( r \frac{\partial \theta }{\partial r} \right) \\&\displaystyle \quad = - s\frac{\partial \theta }{\partial t} - (1+s)u\frac{\partial \theta }{\partial r} - \left( \gamma -1\right) \omega \frac{1}{r}\frac{\partial \left( r u\right) }{\partial r} + \frac{2}{3}\alpha _{\infty }\left( 1+\theta \right) ^{-1/3}\left( \frac{\partial \theta }{\partial r}\right) ^2\\&\displaystyle \qquad + \frac{\left( \gamma - 1\right) \mu _{\infty }}{p_{\infty }}\left( 1+\theta \right) ^{2/3}\left[ 2\left( \frac{\partial u}{\partial r}\right) ^2 - \frac{2}{3}\left( \frac{\partial u}{\partial r} + \frac{u}{r}\right) ^2\right] \end{aligned} \end{aligned}$$
(53)
$$\begin{aligned}&\displaystyle \omega - \theta - s = s\theta \end{aligned}$$
(54)

Perturbation equations in Cartesian coordinates

On substituting (8) into (48)–(50), and (4), we obtain, respectively,

$$\begin{aligned}&\displaystyle \frac{\partial s}{\partial t} + \frac{\partial u}{\partial x} = - \frac{\partial \left( su\right) }{\partial x} \end{aligned}$$
(55)
$$\begin{aligned}&\displaystyle \frac{\partial u}{\partial t} + \frac{a_{\infty }^2}{\gamma }\frac{\partial \omega }{\partial x} - \frac{4}{3}\nu _{\infty }\left( 1+\theta \right) ^{2/3}\frac{\partial ^2 u}{\partial x^2} \nonumber \\&\displaystyle \quad = -s\frac{\partial u}{\partial t} - (1+s)u\frac{\partial u}{\partial x} + \frac{8}{9}\nu _{\infty }\left( 1+\theta \right) ^{-1/3}\left( \frac{\partial \theta }{\partial x}\right) \left( \frac{\partial u}{\partial x}\right) \end{aligned}$$
(56)
$$\begin{aligned}&\displaystyle \begin{aligned}&\displaystyle \frac{\partial \theta }{\partial t} + \left( \gamma -1\right) \frac{\partial u}{\partial x} - \alpha _{\infty }\left( 1+\theta \right) ^{2/3}\frac{\partial ^2 \theta }{\partial x^2} \\&\displaystyle \quad =- s\frac{\partial \theta }{\partial t} - (1+s)u\frac{\partial \theta }{\partial x} - \left( \gamma -1\right) \omega \frac{\partial u}{\partial x} + \frac{2}{3}\alpha _{\infty }\left( 1+\theta \right) ^{-1/3}\left( \frac{\partial \theta }{\partial x}\right) ^2\\&\displaystyle \qquad + \frac{4\left( \gamma - 1\right) \mu _{\infty }}{3p_{\infty }}\left( 1+\theta \right) ^{2/3}\left( \frac{\partial u}{\partial x}\right) ^2 \end{aligned} \end{aligned}$$
(57)
$$\begin{aligned}&\displaystyle \omega - \theta - s = s\theta \end{aligned}$$
(58)

Low Mach equations in cylindrical and Cartesian coordinates

The governing equations (45)–(47) of the fluid in the low Mach regime for an infinitely long cylindrical wire become

$$\begin{aligned}&\displaystyle \frac{\partial \rho }{\partial t} + \frac{1}{r}\frac{\partial \left( r \rho u_r \right) }{\partial r} = 0 \end{aligned}$$
(59)
$$\begin{aligned}&\displaystyle \rho \frac{\partial u_r}{\partial t} = - \frac{\partial p}{\partial r} + \frac{1}{r}\frac{\partial }{\partial r}\left[ 2\mu r\left( \frac{\partial u_r}{\partial r}\right) \right] \end{aligned}$$
(60)
$$\begin{aligned}&\displaystyle \rho C_v\frac{\partial T_g}{\partial t} = \frac{1}{r}\frac{\partial }{\partial r} \left( r \kappa \frac{\partial T_g}{\partial r} \right) \end{aligned}$$
(61)

The governing equations (48)–(50) of the fluid in the low Mach regime for an infinite plate become

$$\begin{aligned}&\displaystyle \frac{\partial \rho }{\partial t} + \frac{\partial \left( \rho u_x \right) }{\partial x} = 0 \end{aligned}$$
(62)
$$\begin{aligned}&\displaystyle \rho \frac{\partial u_x}{\partial t} = - \frac{\partial p}{\partial x} + \frac{\partial }{\partial x}\left[ \frac{4\mu }{3}\left( \frac{\partial u_x}{\partial x}\right) \right] \end{aligned}$$
(63)
$$\begin{aligned}&\displaystyle \rho C_v \frac{\partial T_g}{\partial t} = \frac{\partial }{\partial x} \left( \kappa \frac{\partial T_g}{\partial x} \right) \end{aligned}$$
(64)

The equation of state is \(p_0 = \rho R_g T_g\), where \(R_g\) is the specific gas constant of air (287.058J / kg / K).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguli, S., Lele, S.K. Low Mach, compressibility, and finite size effects of localized uniform heat sources in a gas. Theor. Comput. Fluid Dyn. 33, 341–358 (2019). https://doi.org/10.1007/s00162-019-00496-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00496-w

Keywords

Navigation