Skip to main content
Log in

StanShock: a gas-dynamic model for shock tube simulations with non-ideal effects and chemical kinetics

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A high-order, quasi-one-dimensional, reacting, compressible flow solver is developed to simulate non-ideal effects and chemical kinetics in shock tube systems. To this end, physical models for the thermoviscous boundary-layer development, area variation, gas interfaces, and reaction chemistry are considered. The model is first verified through simulations of steady isentropic nozzle flow, multi-species Sod’s problem, laminar premixed flame, and ZND detonation test cases. Comparisons with experiments are made by examining end-wall pressure traces that are gathered from shock tube experiments designed to test the code’s capabilities. Subsequently, the solver is utilized for uncertainty quantification and design optimization of a driver insert. Both applications prove to be highly efficient, indicating the utility of the solver for the design of experiments in consideration of non-ideal gas-dynamic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hanson, R.K., Davidson, D.F.: Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44, 103–114 (2014). https://doi.org/10.1016/j.pecs.2014.05.001

    Article  Google Scholar 

  2. Petersen, E.L., Hanson, R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001). https://doi.org/10.1007/PL00004051

    Article  Google Scholar 

  3. Pang, G.A., Davidson, D.F., Hanson, R.K.: Experimental study and modeling of shock tube ignition delay times for hydrogen/oxygen/argon mixtures at low temperatures. Proc. Combust. Inst. 32, 181–188 (2009). https://doi.org/10.1016/j.proci.2008.06.014

    Article  Google Scholar 

  4. Davidson, D.F., Hanson, R.K.: Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements. Shock Waves 19, 271–283 (2009). https://doi.org/10.1007/s00193-009-0203-0

    Article  Google Scholar 

  5. Hong, Z., Pang, G., Vasu, S., Davidson, D., Hanson, R.: The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves. Shock Waves 19, 113–123 (2009). https://doi.org/10.1007/s00193-009-0205-y

    Article  Google Scholar 

  6. Li, H., Owens, Z.C., Davidson, D.F., Hanson, R.K.: A simple reactive gasdynamic model for the computation of gas temperature and species concentrations behind reflected shock waves. Int. J. Chem. Kinet. 40, 189–198 (2008). https://doi.org/10.1002/kin.20305

    Article  Google Scholar 

  7. Chaos, M., Dryer, F.L.: Chemical-kinetic modeling of ignition delay: considerations in interpreting shock tube data. Int. J. Chem. Kinet. 42(3), 143–150 (2010). https://doi.org/10.1002/kin.20471

    Article  Google Scholar 

  8. Weber, Y.S., Oran, E.S., Boris, J.P., Anderson, J.D.: The numerical simulation of shock bifurcation near the end wall of a shock tube. Phys. Fluids 7, 2475–2488 (1995). https://doi.org/10.1063/1.868691

    Article  MATH  Google Scholar 

  9. Yamashita, H., Kasahara, J., Sugiyama, Y., Matsuo, A.: Visualization study of ignition modes behind bifurcated-reflected shock waves. Combust. Flame 159, 2954–2966 (2012). https://doi.org/10.1016/j.combustflame.2012.05.009

    Article  Google Scholar 

  10. Grogan, K.P., Ihme, M.: Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems. Proc. Combust. Inst. 35(2), 2181–2189 (2015). https://doi.org/10.1016/j.proci.2014.07.074

    Article  Google Scholar 

  11. Khokhlov, A., Austin, J., Knisely, A.: Development of hot spots and ignition behind reflected shocks in 2H\(_2\) + O\(_2\). 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, UK, Paper 20 (2015)

  12. Grogan, K.P., Ihme, M.: Regimes describing shock boundary layer interaction and ignition in shock tubes. Proc. Combust. Inst. 36(2), 2927–2935 (2017). https://doi.org/10.1016/j.proci.2016.06.078

    Article  Google Scholar 

  13. Lipkowicz, J.T., Wlokas, I., Kempf, A.M.: Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes. Shock Waves 29, 511–521 (2019). https://doi.org/10.1007/s00193-018-0867-4

    Article  Google Scholar 

  14. Ben-Dor, G., Igra, O., Elpherin, T. (eds.): Handbook of Shock Waves. Elsevier, New York (2001). https://doi.org/10.1016/B978-0-12-086430-0.50045-2

    Book  Google Scholar 

  15. Alpher, R.A., White, D.R.: Flow in shock tubes with area change at the diaphragm section. J. Fluid Mech. 3(5), 457–470 (1958). https://doi.org/10.1017/S0022112058000124

    Article  Google Scholar 

  16. Saad, M.: Compressible Fluid Flow. Prentice-Hall, Englewood Cliffs (1985)

    Google Scholar 

  17. Kays, W., Crawford, M., Weigand, B.: Convective Heat and Mass Transfer. McGraw-Hill, New York (2005)

    Google Scholar 

  18. Mark, H.: The interaction of a reflected shock wave with the boundary layer in a shock tube. J. Aeronaut. Sci. 24, 304–306 (1957)

    Article  Google Scholar 

  19. Houim, R.W., Kuo, K.K.: A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios. J. Comput. Phys. 230, 8527–8553 (2011). https://doi.org/10.1016/j.jcp.2011.07.031

    Article  MathSciNet  MATH  Google Scholar 

  20. Ziegler, J.: Simulations of compressible, diffusive, reactive flows with detailed chemistry using a high-order hybrid WENO-CD scheme. Ph.D. thesis, California Institute of Technology (2011)

  21. Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014). https://doi.org/10.1016/j.jcp.2014.03.029

    Article  MathSciNet  MATH  Google Scholar 

  22. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical Report No. 97-65, Institute for Computer Applications in Science and Engineering NASA Langley Research Center (1997)

  23. Grogan, K.P.: Modeling and simulation of non-ideal combustion. Ph.D. thesis, Stanford University (2018)

  24. Glowinski, R., Osher, S.J., Yin, W. (eds.): Splitting Methods in Communication and Imaging, Science, and Engineering. Springer, New York (2016). https://doi.org/10.1007/978-3-319-41589-5

    Book  MATH  Google Scholar 

  25. Goodwin, D.G., Speth, R.L., Moffat, H.K., Weber, B.W.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org (2018). Version 2.4.0

  26. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996). https://doi.org/10.1006/jcph.1996.0085

    Article  MathSciNet  MATH  Google Scholar 

  27. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001). https://doi.org/10.1006/jcph.2000.6685

    Article  MathSciNet  MATH  Google Scholar 

  28. Billet, G., Abgrall, R.: An adaptive shock-capturing algorithm for solving unsteady reactive flows. Comput. Fluids 32, 1473–1495 (2003). https://doi.org/10.1016/S0045-7930(03)00004-5

    Article  MATH  Google Scholar 

  29. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009). https://doi.org/10.1007/b79761

    Book  MATH  Google Scholar 

  30. Lam, S.K., Pitrou, A., Seibert, S.: Numba: a LLVM-based Python JIT compiler. LLVM@SC (2015)

  31. Hunter, J.D.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  32. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978). https://doi.org/10.1016/0021-9991(78)90023-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998). https://doi.org/10.1017/CBO9780511605604

    Book  MATH  Google Scholar 

  34. Hong, Z., Davidson, D., Hanson, R.: An improved \(\text{ H }_{2}/\text{ O }_{2}\) mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158, 633–644 (2011). https://doi.org/10.1016/j.combustflame.2010.10.002

    Article  Google Scholar 

  35. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511754708

    Book  Google Scholar 

  36. Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., Klippenstein, S.J.: Comprehensive \(\text{ H }_{2}/\text{ O }_{2}\) kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44(7), 444–474 (2012). https://doi.org/10.1002/kin.20603

    Article  Google Scholar 

  37. Campbell, M.F.: Studies of biodiesel surrogates using novel shock tube techniques. Ph.D. thesis, Stanford University (2014)

  38. Tranter, R.S., Lynch, P.T.: A miniature high repetition rate shock tube. Rev. Sci. Instrum. 84, 094102 (2013). https://doi.org/10.1063/1.4820917

    Article  Google Scholar 

  39. Lee, D., Hochgreb, S.: Rapid compression machines: Heat transfer and suppression of corner vortex. Combust. Flame 114, 531–545 (1998). https://doi.org/10.1016/S0010-2180(97)00327-1

    Article  Google Scholar 

  40. Ihme, M.: On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combust. Flame 159(4), 1592–1604 (2012). https://doi.org/10.1016/j.combustflame.2011.11.022

    Article  Google Scholar 

  41. Santer, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York (2003). https://doi.org/10.1007/978-1-4757-3799-8

    Book  Google Scholar 

  42. Rasmussen, C.E., Williams, K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support through the Air Force Office of Scientific Research under Award No. FA9550-14-1-0219. Additionally, we would like to thank Ronald K. Hanson, David F. Davidson, and Kenneth Brezinsky for invaluable discussions on shock tube experiments, which greatly informed this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Grogan.

Additional information

Communicated by H. Olivier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grogan, K., Ihme, M. StanShock: a gas-dynamic model for shock tube simulations with non-ideal effects and chemical kinetics. Shock Waves 30, 425–438 (2020). https://doi.org/10.1007/s00193-019-00935-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00935-x

Keywords

Navigation