Skip to main content
Log in

Numerical simulation of shock and detonation waves in bubbly liquids

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A well-posed mathematical model of nonisothermal, two-phase, two-velocity flow of a bubbly medium with chemically inert liquid and chemically inert or active gas bubbles is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas-bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations, and the Rayleigh–Plesset equation for radial pulsation of gas bubbles allowing solutions of the soliton type that are realized in experiments to be obtained. The model is validated by comparing calculations of detonation wave propagation with experimental data in water or an aqueous solution of glycerin with bubbles of acetylene–oxygen mixture or with bubbles of argon–hydrogen–oxygen mixture for a volume gas content of 1–6%. The model is shown to provide satisfactory results for the detonation propagation velocity and detonation pressure profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frolov, S.M., Frolov, F.S., Aksenov,V.S., Avdeev, K.A., Petrov A.D.: Hydro-jet pulse detonation engine (variants) and method for creating hydro-jet thrust. Patent PCT/RU 2013/001148 (2013)

  2. Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Tukhvatullina, R.R., Frolov, S.M., Frolov, F.S.: Numerical simulation of momentum transfer from a shock wave to a bubbly medium. Russ. J. Phys. Chem. B 9, 363–374 (2015). https://doi.org/10.1134/S1990793115030021

    Article  Google Scholar 

  3. Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Frolov, F.S., Shamshin, I.O., Tukhvatullina, R.R., Basara, B., Edelbauer, W., Pachler, K.: Experimental and computational studies of shock wave-to-bubbly water momentum transfer. Int. J. Multiph. Flow 92, 20–38 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.016

    Article  MathSciNet  Google Scholar 

  4. Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Frolov, F.S., Sadykov, I.A., Shamshin, I.O., Tukhvatullina, R.R.: Pulsed detonation hydroramjet: simulations and experiments. Shock Waves (2019). https://doi.org/10.1007/s00193-019-00906-2

    Article  Google Scholar 

  5. Noordzij, L.: Shock waves in bubble–liquid mixtures. Phys. Commun. 3, 1 (1971)

  6. Burdukov, A.P., Kuznetsov, V.V., Kutateladze, S.S., Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.R.: Shock wave in a gas–liquid medium. J. Appl. Mech. Tech. Phys. 14, 349–352 (1973). https://doi.org/10.1007/BF00850948

    Article  Google Scholar 

  7. Gelfand, B.E., Gubin, S.A., Kogarko, B.S., Kogarko, S.M.: Investigation of compression waves in a mixture of liquid with gas bubbles. Sov. Phys. Dokl. 18, 787 (1974)

    Google Scholar 

  8. Mori, Y., Hijikata, K., Komine, A.: Propagation of pressure waves in two-phase flow. Int. J. Multiph. Flow 2, 139–152 (1975). https://doi.org/10.1016/0301-9322(75)90004-X

    Article  Google Scholar 

  9. Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.R., Kuznetsov, V.V., Malykh, N.V.: Wave processes in two-phase systems, by S.S. Kutateladze (Inst. Teplofiz. SO AN SSSR, Novosibirsk, 1975), p. 54 (1975)

  10. Padmanabhan, M., Martin, C.S.: Shock-wave formation in flowing bubbly mixtures by steepening of compression waves. Int. J. Multiph. Flow 4, 81–88 (1978). https://doi.org/10.1016/0301-9322(78)90027-7

    Article  Google Scholar 

  11. Borisov, A.A., Gelfand, B.E., Timofeev, E.I.: Shock waves in liquids containing gas bubbles. Int. J. Multiph. Flow 9, 531–543 (1983). https://doi.org/10.1016/0301-9322(83)90016-2

    Article  Google Scholar 

  12. Beylich, A.E., Gülhan, A.: On the structure of nonlinear waves in liquids with gas bubbles. Phys. Fluids A 2, 1412–1428 (1990). https://doi.org/10.1063/1.857590

    Article  MATH  Google Scholar 

  13. Kameda, M., Matsumoto, Y.: Shock waves in a liquid containing small gas bubbles. Phys. Fluids 8, 322–335 (1996). https://doi.org/10.1063/1.868788

    Article  MathSciNet  Google Scholar 

  14. Kameda, M., Shimaura, N., Higashino, F., Matsumoto, Y.: Shock waves in a uniform bubbly flow. Phys. Fluids 10, 2661–2668 (1998). https://doi.org/10.1063/1.869779

    Article  Google Scholar 

  15. Sychev, A.I.: Intense shock waves in bubble media. Tech. Phys. 55, 783–788 (2010). https://doi.org/10.1134/S1063784210060058

    Article  Google Scholar 

  16. Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Frolov, S.M., Frolov, F.S., Shamshin, I.O.: Momentum transfer from a shock wave to a bubbly liquid. Russ. J. Phys. Chem. B 9, 895–900 (2015). https://doi.org/10.1134/S1990793115060032

    Article  Google Scholar 

  17. Hasegawa, T., Fujiwara, T.: Detonation in oxyhydrogen bubbled liquids. Symposium (International) on Combustion 19(1), 675–683 (1982). https://doi.org/10.1016/S0082-0784(82)80242-7

  18. Sychev, A.I.: Shock-wave ignition of liquid–gas bubble systems. Combust. Explos. Shock Waves 21, 250–254 (1985). https://doi.org/10.1007/BF01463746

    Article  Google Scholar 

  19. Sychev, A.I.: Detonation waves in a liquid–gas bubble system. Combust. Explos. Shock Waves 21, 365–372 (1985). https://doi.org/10.1007/BF01463860

    Article  Google Scholar 

  20. Pinaev, A.V., Sychev, A.I.: Structure and properties of detonation in a liquid–gas buble system. Combust. Explos. Shock Waves 22, 360–368 (1986). https://doi.org/10.1007/BF00750357

    Article  Google Scholar 

  21. Sychev, A.I., Pinaev, A.V.: Self-sustaining detonation in liquids with bubbles of explosive gas. Appl. Mech. Tech. Phys. 27, 119–123 (1986). https://doi.org/10.1007/BF00911132

    Article  Google Scholar 

  22. Pinaev, A.V., Sychev, A.I.: Effects of gas and liquid properties on detonation-wave parameters in liquid–bubble systems. Combust. Explos. Shock Waves 23, 735–742 (1987). https://doi.org/10.1007/BF00742531

    Article  Google Scholar 

  23. Beylich, A.E., Gülhan, A.: Waves in reactive bubbly liquids. In: Adiabatic Waves in Liquid–Vapor Systems, pp. 39–48. Springer, Berlin (1990). https://doi.org/10.1007/978-3-642-83587-2_4

  24. Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Sadykov, I.A., Frolov, S.M., Frolov, F.S., Shamshin, I.O.: Phenomenology of shock wave propagation in water with bubbles of reactive gas. Goren. (Moskva) Combust. Explos. 9, 64–82 (2016)

    Google Scholar 

  25. Trotsyuk, A.V., Fomin, P.A.: Model of bubble detonation. Combus. Explos. Shock Waves 28, 439–445 (1992). https://doi.org/10.1007/BF00789969

    Article  Google Scholar 

  26. Shagapov, V.Sh., Vakhitova, N.K.: Waves in a bubble system in the presence of gas-phase chemical reactions. Combust. Explos. Shock Waves 25, 669–677 (1989). https://doi.org/10.1007/BF00758728

  27. Kedrinskii, V.K.: The Iordansky–Kogarko–van Wijngaarden model: Shock and rarefaction wave interactions in bubbly media. Appl. Sci. Res. 58, 115–130 (1997). https://doi.org/10.1023/A:1000761931688

    Article  Google Scholar 

  28. Krasnyi, Yu.P., Mikho, V.V.: Self-sustaining nonlinear detonation wave in a liquid with bubbles of combustible gas. Combust. Explos. Shock Waves 25, 200–205 (1989). https://doi.org/10.1007/BF00742017

  29. Shagapov, V.Sh., Abdrashitov, D.V.: Detonation wave structure in bubble liquid. Combust. Explos. Shock Waves 28(6), 654–660 (1992). https://doi.org/10.1007/BF00754880

  30. Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Sevastopoleva, D.G., Tukhvatullina, R.R., Frolov, S.M., Frolov, F.S.: Shock waves in water with bubbles of reactive gas: calculation. Goren. (Moskva) Combust. Explos. 9, 47–63 (2016)

    Google Scholar 

  31. Bayazitova, A.R., Gimaltdinov, I.K., Kucher, A.M., Shagapov, V.Sh.: Dynamics of detonation waves in an annular layer of a round pipe. Fluid Dyn. 48, 201–210 (2013). https://doi.org/10.1134/S0015462813020075

  32. Nigmatulin, R.I., Shagapov, V.Sh., Gimaltdinov, I.K., Akhmadulin, F.F.: Explosion of a bubble curtain with a combustible–gas mixture under the action of a pressure pulse. Dokl. Phys. 48(2), 75–79 (2003). https://doi.org/10.1134/1.1560735

  33. Shagapov, V.Sh., Gimaltdinov, I.K., Bayazitova, A.R., Spevak, D.S.: Propagation of detonation waves along a tubular bubble cluster in liquid. High Temp. 47, 424–431 (2009). https://doi.org/10.1134/S0018151X0903016X

  34. Stuhmiller, J.H.: The influence of interfacial pressure forces on the character of two-phase flow model equations. Int. J. Multiph. Flow 3, 551–560 (1977). https://doi.org/10.1016/0301-9322(77)90029-5

    Article  MATH  Google Scholar 

  35. Tukhvatullina, R.R., Frolov, S.M.: Well-posed Euler model of shock-induced two-phase flow in bubbly liquid. Shock Waves 28, 253–266 (2018). https://doi.org/10.1007/s00193-017-0731-y

    Article  Google Scholar 

  36. Tukhvatullina, R.R., Frolov, S.M.: Well-posed Euler model of shock and detonation induced two-phase flow in bubbly liquid. In: Frolov, S.M., Roy, G.D. (eds.) Progress in Detonation Physics, pp. 106–120. ORUS Press, Moscow (2016)

    Google Scholar 

  37. Smith, G.P., Golden, D.M., Frenklach, M., Eiteener, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Gardiner, W.C., Lissianski, V.V., Qin, Z.W.: GRI-Mech 3.0 (2000). http://combustion.berkeley.edu/gri-mech/

  38. Haberman, W.L., Morton, R.K.: An experimental investigation of the drag and shape of air bubbles rising in various liquids. Technical Report, DTIC Accession Number AD0019377 (1953)

  39. Nigmatulin, R.I.: Dynamics of Multiphase Media. CRC Press, Boca Raton (1990)

    Google Scholar 

  40. van Wijngaarden, L.: One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369–396 (1972). https://doi.org/10.1146/annurev.fl.04.010172.002101

    Article  MATH  Google Scholar 

  41. David, G.G., Harry K.M., Raymond, L.S.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0 (2017). https://doi.org/10.5281/zenodo.170284. http://www.cantera.org

  42. Byrne, G.D., Hindmarsh, A.C.: A polyalgorithm for the numerical solution of ordinary differential equations. ACM Trans. Math. Softw. (TOMS) 1, 71–96 (1975). https://doi.org/10.1145/355626.355636

    Article  MathSciNet  MATH  Google Scholar 

  43. Kutateladze, S.S., Nakoriakov, V.E.: Heat and Mass Transfer and Waves in Gas–Liquid Systems. Novosibirsk Izdatel Nauka, Moscow (1984)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the subsidy given to the N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences to implement the state assignment on the topic No. 0082-2016-0011 “Fundamental studies of conversion processes of energetic materials and development of scientific grounds of controlling these processes” (Registration No. AAAA-A17-117040610346-5) and to the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences” to implement the state assignment on the topic No. 0065-2019-0005 “Mathematical modeling of dynamic processes in deformed and reactive media using multiprocessor computational systems” (Registration No. AAAA-A19-119011 590092-6), and partially supported by the Russian Foundation for Basic Research (Project 16-29-01065ofi-m).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Tukhvatullina.

Additional information

Communicated by A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukhvatullina, R.R., Frolov, S.M. Numerical simulation of shock and detonation waves in bubbly liquids. Shock Waves 30, 263–271 (2020). https://doi.org/10.1007/s00193-019-00914-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00914-2

Keywords

Navigation