Skip to main content
Log in

Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh–Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005–0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Frolov, S.M., Frolov, F.S., Aksenov,V.S., Avdeev, K.A., Petrov, A.D.: Pump-jet pulse detonation engine (variants) and method for creating hydro-jet thrust. Patent application PCT/RU2013/001148 on 23.12.2013. https://patentscope.wipo.int/search/ru/detail.jsf?docId=WO2015099552. Accessed 2 July 2015

  2. Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Tukhvatullina, R.R., Frolov, S.M., Frolov, F.S.: Numerical simulation of momentum transfer from a shock wave to a bubbly medium. Russ. J. Phys. Chem. B 9(3), 363–374 (2015). doi:10.1134/S1990793115030021

    Article  Google Scholar 

  3. Wijngaarden, L.V.: On equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33(3), 465–474 (1968). doi:10.1017/S002211206800145X

    Article  MATH  Google Scholar 

  4. Kutateladze, S.S., Nakoryakov, V.E.: Heat and Mass Transfer and Waves in Gas–Liquid Systems. Izdatel’stvo Nauka, Novosibirsk (1984)

    Google Scholar 

  5. Kameda, M., Matsumoto, Y.: Shock waves in a liquid containing small gas bubbles. Phys. Fluid 8(2), 322–335 (1996). doi:10.1063/1.868788

    Article  MathSciNet  Google Scholar 

  6. Kameda, M., Shimaura, N., Higashino, F., Matsumoto, Y.: Shock waves in a uniform bubbly flow. Phys. Fluid 10(10), 2661–2668 (1998). doi:10.1063/1.869779

    Article  Google Scholar 

  7. Mori, J., Hijikata, K., Komine, A.: Propagation of pressure waves in two-phase flow. Int. J. Multiph. Flow 2(2), 139–152 (1975). doi:10.1016/0301-9322(75)90004-X

    Article  Google Scholar 

  8. Sychev, A.I.: Intense shock waves in bubble media. Tech. Phys. 55(6), 783–788 (2010). doi:10.1134/S1063784210060058

    Article  Google Scholar 

  9. Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.R., Kuznetsov, V.V., Malykh, N.V.: Wave processes in two-phase systems. In: Kutateladze, S.S. (ed.) Inst. Therm. Phys. Sib. Br. USSR Academy of Sciences, p 54. (1975)

  10. Borisov, A.A., Gelfand, B.E., Timofeev, E.I.: Shock waves in liquids containing gas bubbles. Int. J. Multiph. Flow 9(5), 531–543 (1983) doi:10.1016/0301-9322(83)90016-2

  11. Gelfand, B.E., Gubin, S.A., Kogarko, B.S., Kogarko, S.M.: Investigations of compression waves in a mixture of liquid with gas bubbles. Doklady USSR Acad. Sci., 213, No.5. (1973)

  12. Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Frolov, S.M., Frolov, F.S., Shamshin, I.O.: Momentum transfer from a shock wave to a bubbly liquid. Russ. J. Phys. Chem. B 9(6), 895–900 (2015). doi:10.1134/S1990793115060032

    Article  Google Scholar 

  13. Nigmatulin, R.I.: Dynamics of Multiphase Media, vol. 1. Hemisphere, New York (1990)

    Google Scholar 

  14. Preston, A.T., Colonius, T., Brennen, C.E.: A reduced-order model of diffusive effects on the dynamics of bubbles. Phys. Fluid 19(12), 123302 (2007). doi:10.1063/1.2825018

    Article  MATH  Google Scholar 

  15. Gidaspow, D.: Modeling of two phase flow. Heat transfer 7, 163–168 (1974)

    Google Scholar 

  16. van Wijngaarden, L.: Some problems in the formulation of the equations for gas/liquid flows. In: Koiter, W.T. (ed.) Theoretical and Applied Mechanics. North-Holland Publishing Company, Amsterdam, pp. 249–260 (1976)

  17. Stewart, H.B.: Stability of two-phase flow calculation using two-fluid models. J. Comput. Phys. 33(2), 259–270 (1979). doi:10.1016/0021-9991(79)90020-2

    Article  MATH  Google Scholar 

  18. Klebanov, L.A., Kroshilin, A.E., Nigmatulin, B.I., Nigmatulin, R.I.: On the hyperbolicity, stability and correctness of the Cauchy problem for the system of equations of two-speed motion of two-phase media. J. Appl. Math. Mech. 46(1), 66–74 (1982). doi:10.1016/0021-8928(82)90084-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Ramshaw, J.D., Trapp, J.A.: Characteristics, stability, and short-wavelength phenomena in two-phase flow equation systems. Nucl. Sci. Eng. 66(1), 93–102 (1978)

    Article  Google Scholar 

  20. Radvogin, YuB, Posvyanskii, V.S., Frolov, S.M.: Stability of 2D two-phase reactive flows. J. Phys. IV 12, 437–444 (2002). doi:10.1051/jp4:20020313

    Google Scholar 

  21. Stuhmiller, J.H.: The influence of interfacial pressure forces on the character of two-phase flow model equations. Int. J. Multiph. Flow 3(6), 551–560 (1977). doi:10.1016/0301-9322(77)90029-5

    Article  MATH  Google Scholar 

  22. Yeom, G.S., Chang, K.S., Baek, S.W.: Robust Waf-Hll scheme for compressible two-pressure two-velocity multiphase flow model. Eng. Appl. Comput. Fluid Mech. 6(1), 144–162 (2012). doi:10.1080/19942060.2012.11015410

    Google Scholar 

  23. Yeom, G.S., Chang, K.S.: Two-dimensional two-fluid two-phase flow simulation using an approximate Jacobian matrix for HLL scheme. Numer. Heat Transf. Part B Fundam. 56(5), 372–392 (2010). doi:10.1080/10407790903507998

    Article  Google Scholar 

  24. Gavrilyuk, S., Saurel, R.: Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175(1), 326–360 (2002). doi:10.1006/jcph.2001.6951

    Article  MathSciNet  MATH  Google Scholar 

  25. Burdukov, A.P., Kuznetsov, V.V., Kutateladze, S.S., Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.R.: Shock wave in a gas–liquid medium. J. Appl. Mech. Tech. Phys. 14(3), 349–352 (1973). doi:10.1007/BF00850948

    Article  Google Scholar 

  26. Noordzij, L. Shock waves in bubble–liquid mixtures. Phys. Communs 3 (1971)

  27. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977). doi:10.1146/annurev.fl.09.010177.001045

  28. Schlichting, H.: Boundary-Layer Theory. McGraw-Hill, New-York (1968). doi:10.1007/978-3-662-52919-5

  29. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  30. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. Courier Corporation, New York (2005)

    Google Scholar 

  31. Harlow, F.H., Amsden, A.A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8(2), 197–213 (1971). doi:10.1016/0021-9991(71)90002-7

    Article  MATH  Google Scholar 

  32. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Publications, New York (2002)

    Google Scholar 

Download references

Acknowledgements

The present authors would like to thank their colleagues V.S. Aksenov, K.A. Avdeev, F.S. Frolov, I.O. Shamshin, and I. A. Sadykov for their valuable contribution to the experimental results used in this article. This work was supported by the Russian Foundation for Basic Research (project ofi-m 16-29-01065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Tukhvatullina.

Additional information

Communicated by F. Zhang and A. Higgins.

Appendix

Appendix

$$\begin{aligned} T= & {} \left( \begin{array}{ccccccc} \rho ^0_2 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \phi ^0_2 &{}\quad 0 \\ -1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \rho ^0_2 \phi ^0_2 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \rho _1 \phi ^0_1 &{}\quad 0 &{}\quad 0\\ \displaystyle {\frac{p^0+(\gamma - 1) p^0_{\mathrm {i}}}{\phi ^0_2 }} &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0&{}\quad 0 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0&{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0&{}\quad 1\\ \end{array} \right) \end{aligned}$$
(38)
$$\begin{aligned} A= & {} \left( \begin{array}{ccccccc} \rho ^0_2 u^0_2 &{}\quad 0 &{}\quad 0 &{}\quad \rho ^0_2 \phi ^0_2 &{}\quad 0 &{}\quad u^0_2 \phi ^0_2 &{}\quad 0 \\ -u^0_1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \phi ^0_1 &{}\quad 0 &{}\quad 0\\ p^0 - p^0_{\mathrm {i}} &{}\quad \phi ^0_2 &{}\quad 0 &{}\quad \rho ^0_2 u^0_2 \phi ^0_2 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ p^0_{\mathrm {i}} - p^0 &{}\quad 0 &{}\quad \phi ^0_1 &{}\quad 0 &{}\quad \rho _1 u_1 \phi ^0_1 &{}\quad 0 &{}\quad 0\\ \displaystyle {\frac{(p^0+(\gamma - 1) p^0_{\mathrm {i}}) u^0_2}{\phi ^0_2 }} &{}\quad u^0_2 &{}\quad 0 &{}\quad \gamma p^0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ \displaystyle {u^0_2} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad u^0_2\\ \end{array} \right) \nonumber \\ \end{aligned}$$
(39)

where \(p^0 = p^0_2 = p^0_1\), \(p^0_{\mathrm {i}} = p^0 + C_\mathrm {s}(\phi ^0_2, \mathrm {Re}_{12}^0) \rho _1 (u^0_1 - u^0_2)^2\), \(\displaystyle {R^0 = \left( \frac{3 \phi ^0_2}{4 \pi N}\right) ^{\frac{1}{3}}}\). For matrix Q there are no zero elements only for \(\displaystyle {Q_{7,2} = - \frac{1}{\rho _1 R^0}}, \displaystyle {Q_{7,3} = \frac{1}{\rho _1 R^0}}, Q_{6, 7} = - 4\pi N \left( R^0\right) ^2\).

The polynomials are written in the following form using the relations \(c^2_2 \rho _2 = p_2 \gamma \) and (2):

$$\begin{aligned} P_1(\lambda )= & {} \rho ^0_2 \big (\varkappa \rho _1(\lambda - u^0_1)^2\phi ^0_2 + \varkappa \rho _1 C_s(\phi ^0_2, \mathrm {Re}_{12}^0) (\Delta ^0)^2 \nonumber \\&\quad \phi ^0_2 \phi ^0_1\left( \lambda - u^0_2 \right) ^2 \big ) \left( (\lambda - u^0_2)^2 - (c^0_2)^2 \right) \end{aligned}$$
(40)
$$\begin{aligned} P_2(\lambda )= & {} \varkappa \rho ^0_2 (\lambda - u^0_2)^2 \gamma p^0_{\mathrm {i}} \phi ^0_1 \end{aligned}$$
(41)

where \(\displaystyle {\varkappa = \frac{3 \phi ^0_2}{(R^0\beta )^2\rho _1}}\)

(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukhvatullina, R.R., Frolov, S.M. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid. Shock Waves 28, 253–266 (2018). https://doi.org/10.1007/s00193-017-0731-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0731-y

Keywords

Navigation