Skip to main content
Log in

Unsteady self-sustained detonation in flake aluminum dust/air mixtures

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Self-sustained detonation waves in flake aluminum dust/air mixtures have been studied in a tube of diameter 199 mm and length 32.4 m. A pressure sensor array of 32 sensors mounted around certain circumferences of the tube was used to measure the shape of the detonation front in the circumferential direction and pressure histories of the detonation wave. A two-head spin detonation wave front was observed for the aluminum dust/air mixtures, and the cellular structure resulting from the spinning movement of the triple point was analyzed. The variations in velocity and overpressure of the detonation wave with propagation distance in a cell were studied. The interactions of waves in triple-point configurations were analyzed and the flow-field parameters were calculated. Three types of triple-point configuration have been found in the wave front of the detonation wave of an aluminum dust/air mixture. Both strong and weak transverse waves exist in the unstable self-sustained detonation wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Eckhoff, R.K.: Dust Explosions in the Process Industries, 2nd edn. Butterworth-Heinemann (1997)

  2. Bartknecht, W.: Dust Explosions: Course, Prevention and Protection. Springer (1989) [German translation: Bruderer, R.E., Kirby, G.N., Siwek, R.]

  3. Voitsekhovskii, B.V., Mitrofanov, V.V., Topchian, M.E.: The structure of a detonation front in gases. Combust. Explos. Shock Waves 5(3), 267–273 (1969) [English translation: Wright-Patterson Air Force Base Report FTD-MT-64-527 (AD-633, 821), 1966]

  4. Schott, G.L.: Observation of the structure of spinning detonation. Phys. Fluids 8, 850–865 (1965)

    Article  Google Scholar 

  5. Strehlow, R.A.: Multi-dimensional detonation wave structure. Astronaut. Acta 15, 345–357 (1970)

    Google Scholar 

  6. Strehlow, R.A.: Detonation structure and gross properties. Combust. Sci. Technol. 4, 65–71 (1971)

    Article  Google Scholar 

  7. Strehlow, R.A., Adamczyk, A.A., Stiles, R.J.: Transient studies of detonation waves. Astronaut. Acta 17, 509–527 (1972)

    Google Scholar 

  8. Strehlow, R.A., Crooker, A.J.: The structure of marginal detonation waves. Acta Astronaut. 1, 303–315 (1974)

    Article  Google Scholar 

  9. Soloukhin, R.I.: Multi-headed structure of gaseous detonation. Combust. Flame 10, 51–58 (1996)

    Article  Google Scholar 

  10. Achasov, O.V., Penyazkov, O.G.: Dynamics study of detonation-wave cellular structure: 1. Statistical properties of detonation wave front. Shock Waves 11, 297–308 (2002)

  11. Pintgen, F., Eckett, C.A., Austin, J.M., Shepherd, J.E.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133(3), 211–220 (2003)

  12. Pintgen, F., Austin, J.M., Shepherd, J.E.: Detonation front structure: variety and characterization. In: Roy, G.D., Frolov, S.M., Santoro, R.J., Tsyganov, S.A. (eds.) Confined Detonations and Pulse Detonation Engines. Torus Press, Moscow (2003)

  13. Lee, J.H.S.: The Detonation Phenomenon, 1st edn. Cambridge University Press (2008)

  14. Knystautas, R., Lee, J.H.: Experiments on the stability of converging cylindrical detonations. Combust. Flame 16, 61–73 (1971)

  15. Shchelkin, K.I., Troshin, Y.K.: Gas Dynamics of Combustion. Mono Book Corp, Baltimore (1965)

    Google Scholar 

  16. Duff, R., Finger, M.: Stability of a spherical gas detonation. Phys. Fluids 8, 764 (1965)

  17. Lee, J.H.S., Knystautas, R., Guirao, C., Bekesy, A., Sabbagh, S.: On the instability of H\(_2\)-Cl\(_2\) gaseous detonations. Combust. Flame 18, 321–325 (1972)

  18. Kaneshige, M., Shepherd, J.E.: Detonation database. GALCIT Tech. Rept. FM 1997. http://www.galcit.caltech.edu/detn_db/html/db.html (1997)

  19. Zhang, F., Greilich, P., Grönig, H.: Propagation mechanism of dust detonations. Shock Waves 2, 81–88 (1992)

    Article  Google Scholar 

  20. Zhang, F., Grönig, H.: Two-head detonation in reactive particle-oxidizing gas flow. Phys. Fluids A 4, 2308–2315 (1992)

    Article  Google Scholar 

  21. Zhang, F., Grönig, H., van de Ven, A.: DDT and detonation waves in dust-air mixtures. Shock Waves 11, 53–71 (2001)

    Article  Google Scholar 

  22. Zhang, F., Gerrard, K., Ripley, R.: Reaction mechanism of Al particle-air detonation. J. Propuls. Power 25(4), 845–858 (2009)

    Article  Google Scholar 

  23. Zhang, F.: Detonation of gas-particle flow. In: Shock Wave Science and Technology Reference Library, vol. 4, Heterogeneous Detonation, pp. 86–168. Springer (2009)

  24. Borisov, A.A., Khasainov, B.A., Veyssiere, B., Saneev, E.L., Khomik, S.V., Fomin, I.B.: On the detonation of aluminum suspension in air and oxygen. Soviet J. Chem. Phys. 10(2), 250–272 (1991)

    Google Scholar 

  25. Khasainov, B., Virot, F., Veyssiere, B.: Three-dimensional cellular structure of detonations in suspensions of aluminum particles. Shock Waves 23(3), 271–282 (2013)

    Article  Google Scholar 

  26. Tsuboi, N., Hayashi, A.K., Matsumoto, Y.: Three-dimensional parallel simulation of cornstarch-oxygen two-phase detonation. Shock Waves 10(4), 277–285 (2000)

    Article  MATH  Google Scholar 

  27. Liu, Q.M., Li, X.D., Bai, C.H.: Deflagration-to-detonation transition in aluminum dust/air mixture under weak ignition condition. Combust. Flame 156, 914–921 (2009)

    Article  Google Scholar 

  28. Bazyn, T., Krier, H., Glumac, N.: Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves. Combust. Flame 145, 703–713 (2006)

    Article  Google Scholar 

  29. Kong, C.D., Yao, Q., Yu, D., Li, S.Q.: Combustion characteristics of well dispersed aluminum nanoparticle streams in post flame environment. Proc. Combust. Inst. 35, 2479–2486 (2015)

    Article  Google Scholar 

  30. Liu, Q.M., Fan, B.C., Li, H.Z.: Numerical simulation and experimental study on the shock wave induced by flame in aluminum dust. Acta Armamentarii 19, 176–181 (1998) (in Chinese)

  31. Liu, Q.M., Fan, B.C., Li, H.Z.: Study on the shock wave induced by flame in two phase media. Explos. Shock Waves 17, 311–317 (1997) (in Chinese)

  32. Fickett, W., Davis, W.C.: Detonation. University of California Press, Berkeley (1979)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11572044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Liu.

Additional information

Communicated by D. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, S., Huang, J. et al. Unsteady self-sustained detonation in flake aluminum dust/air mixtures. Shock Waves 27, 641–654 (2017). https://doi.org/10.1007/s00193-016-0702-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0702-8

Keywords

Navigation