Skip to main content

Advertisement

Log in

Shock waves and equations of state of matter

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The physical properties of hot dense matter over a broad domain of the phase diagram are of immediate interest in astrophysics, planetary physics, power engineering, controlled thermonuclear fusion, impulse technologies, enginery, and several special applications. The use of intense shock waves in dynamic physics has made the exotic high-energy density states of matter a subject of laboratory experiments and enabled advancing by many orders of magnitude along the pressure scale to range into the megabars and even gigabars. The present report reviews the contribution of shock-wave methods to the problem of the equation of state (EOS) at extreme conditions. Experimental techniques for high-energy density cumulation, the drivers of intense shock waves, and methods for the fast diagnostics of high-energy matter are considered. It is pointed out that the available high pressure and temperature information covers a broad range of the phase diagram, but only irregularly and, as a rule, is not thermodynamically complete; its generalization can be done only in the form of a thermodynamically complete EOS. As a practical example, construction of multi-phase EOS for iron is presented. The model’s results are shown for numerous shock-wave data, the high-pressure melting and evaporation regions and the critical point of iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al’tshuler L.V.: Use of shock waves in physics of high pressure. Sov. Phys. Usp. 8, 52–91 (1965)

    Google Scholar 

  2. Bushman A.V., Fortov V.E: Model equations of state. Sov. Phys. Usp. 26, 465–496 (1983)

    Google Scholar 

  3. Elieser S., Ghatak A.K., Hora H.: An Introduction to Equations of State: Theory and Applications. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  4. Ross M.: Matter under extreme conditions of temperature and pressure. Rep. Prog. Phys. 48, 1–52 (1985)

    Google Scholar 

  5. Chisolm E.D., Crockett S.D., Wallace D.C.: Test of a theoretical equation of state for elemental solids and liquids. Phys. Rev. B 68, 04103-1–104103-12 (2003)

    Google Scholar 

  6. Bushman A.V., Lomonosov I.V., Fortov V.E.: Equations of State for Metals at High Energy Density (in Russian). Institute of Chemical Physics, Chernogolovka (1992)

    Google Scholar 

  7. Bushman A.V., Kanel G.I., Ni A.L., Fortov V.E.: Thermophysics and Dynamics of Intense Pulse Loadings. Taylor& Fransis, London (1993)

    Google Scholar 

  8. Fortov V.E., Khrapak A.G., Yakubov I.T.: Physics of Nonideal Plasmas. Clarendon Press, Oxford (2006)

    Google Scholar 

  9. Grüneisen E.: Theorie des festen zustandes einatomiger elemente. Ann. Phys. 39, 257–306 (1912)

    Google Scholar 

  10. Birch F.: On the possibility of large changes in the Earth’s volume. Phys. Earth Planet Interiors 1, 141–147 (1968)

    Google Scholar 

  11. Carnahan N.F., Starling K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635–636 (1969)

    Google Scholar 

  12. Thiel, M. (eds): Compendium of Shock Wave Data (Report UCRL-50108). Lawrence Livermore Lab, Livermore (1977)

    Google Scholar 

  13. Marsh S.P. (eds): LASL Shock Hugoniot Data. University of California Press, Berkeley (1980)

    Google Scholar 

  14. Zhernokletov M.V., Zubarev V.N., Trunin R.F., Fortov V.E.: Experimental Data on Shock Compressibility and Adiabatic Expansion of Condensed Matter at High Energy Density (in Russian). Institute of Chemical Physics, Chernogolovka (1996)

    Google Scholar 

  15. Trunin R.F., Gudarenko L.F., Zhernokletov M.V., Simakov G.V.: Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Matter [in Russian]. RFNC-VNIIEF, Sarov (2001)

    Google Scholar 

  16. Zeldovich Ya.B., Raizer Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York (1966)

    Google Scholar 

  17. Hultrgen R., Desai P.D., Hawkins D.T., Gleiser M., Kelley K.K., Wagman D.D.: Selected Values of the Thermodynamic Properties of the Elements. American Society for Metals, Metals Park (1973)

    Google Scholar 

  18. Kikoin I.K.: Tables of physical constatnts. Reference book [in Russian. Energoatomizdat, Moscow (1976)

    Google Scholar 

  19. Jayaraman A.: Diamond anvil cell and high pressure physical investigation. Rev. Mod. Phys. 55, 65–108 (1983)

    Google Scholar 

  20. Greene R.G., Luo H., Ruoff A.L.: Al as simple solid: high pressure study to 220 GPa (2.2 Mbar). Phys. Rev. Lett. 73, 2075–2078 (1994)

    Google Scholar 

  21. Akahama Y., Nishimura M., Kinoshita K., Kawamura H.: Evidence of a fcc-hcp transition in aluminum at multimegabar pressure. Phys. Rev. Lett. 96, 045505-1–045505-4 (2006)

    Google Scholar 

  22. Young D.A.: Phase Diagrams of the Elements. University of California Press, Berkely (1991)

    Google Scholar 

  23. Tonkov E.Yu., Ponyatovsky E.G.: Phase Transformations of Elements Under High Pressure. CRC Press, Washington, D.C. (2004)

    Google Scholar 

  24. Boehler R., Ross M.: Melting curve of aluminum in diamond cell to 0.8 Mbar: implications for iron. Earth Planet. Sci. Lett. 153, 223–227 (1997)

    Google Scholar 

  25. Hanstrom A., Lazor P.: High pressure melting and equation of state of aluminum. Earth Planet. Sci. Lett. 305, 209–215 (2000)

    Google Scholar 

  26. McQueen R.G., Marsh S.P., Taylor J.W., Fritz J.N., Carter W.J.: The equation of state of solids from shock wave studies. In: Kinslow, R. (eds) High Velocity Impact Phenomena, pp. 293–417. Academic Press, New York (1970) (Appendies on pp. 515–568)

    Google Scholar 

  27. Avrorin E.N., Vodolaga B.K., Simonenko V.A., Fortov V.E.: Powerful Shock Waves and Extreme States of Matter (in Russian). IVTAN, Moskva (1990)

    Google Scholar 

  28. Duvall G.E., Graham R.A.: Phase transitions under shock-wave loading. Rev. Mod. Phys. 49, 523–579 (1977)

    Google Scholar 

  29. Walsh J.M., Rice M.H., McQueen R.G., Yarger F.L.: Shock-wave compressions of twenty-seven metals equations of state of metals. Phys. Rev. 108, 196–221 (1957)

    Google Scholar 

  30. Al’tshuler L.V., Krupnikov K.K., Ledenev B.N., Zhuchikhin V.I., Brazhnik M.I.: Dynamical compressibility and equation of state for iron under high pressure. Sov. Phys. JETP 7, 606–613 (1958)

    Google Scholar 

  31. Al’tshuler L.V., Krupnikov K.K., Brazhnik M.I.: Dynamical compressibility of metals under pressure from 400,000 to 4 million atmospheres. Sov. Phys. JETP 34, 614–618 (1958)

    Google Scholar 

  32. Kormer S.B., Funtikov A.I., Urlin V.D., Kolesnikova A.N.: Dynamical compression of porous metals and the equation of state with variable specific heat at high temperatures. Sov. Phys. JETP 15, 477–488 (1962)

    Google Scholar 

  33. Al’tshuler L.V., Bakanova A.A., Dudoladov I.P., Dynin E.A., Trunin R.F., Chekin B.S.: Shock adiabatic curves for metals. New data, statistical analysis and general laws. J. Appl. Mech. Technol. Phys. 22, 145–169 (1981)

    Google Scholar 

  34. Al’tshuler L.V., Moiseev B.N., Popov L.V., Simakov G.V., Trunin R.F.: Relative compressibility of iron and lead at pressures of 31 to 34 Mbar. Sov. Phys. JETP 27, 420–422 (1968)

    Google Scholar 

  35. Trunin R.F., Podurets M.A., Moiseev B.N., Simakov G.V., Popov L.V.: Relative compressibility of copper, cadmium and lead at high pressures. Sov. Phys. JETP 29, 630–631 (1969)

    Google Scholar 

  36. Vladimirov A.S., Voloshin N.P., Nogin V.N., Petrovtsev A.V., Simonenko V.A.: Shock compressibility of aluminum at p  ≥   1 Gbar. Sov. Phys. JETP Lett. 39, 85–88 (1984)

    Google Scholar 

  37. Cauble R., Phillion D.W., Hoover T.J., Holmes N.C., Kilkenny J.D., Lee R.W.: Demostration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70(14), 2102–2105 (1993)

    Google Scholar 

  38. Lomonosov I.V.: Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567–584 (2007)

    Google Scholar 

  39. Yoo C.-S., Holmes N.C., Ross M., Webb D.J., Pike C.: Shock temperature and melting of iron at Earth core conditions. Phys. Rev. Lett. 70(25), 3931–3934 (1993)

    Google Scholar 

  40. Gathers G.R.: Dynamic methods for investigating thermophysical properties of matter at very high temperatures and pressures. Rep. Prog. Phys. 49, 341–396 (1986)

    Google Scholar 

  41. Renaudin P., Blancard C., Clerouin J., Faussurier G., Noiret P., Recoules V.: Aluminum equation-of-state data in the warm dense matter regime. Phys. Rev. Lett. 91(7), 075002-1–075002-4 (2003)

    Google Scholar 

  42. Al’tshuler L.V., Petrunin A.P.: Rentgenographic investigation of compressibility of light substances under obstacle impact of shock waves (in Russian). Zhurn. Tekhn. Fiz 31(6), 717–725 (1961)

    Google Scholar 

  43. Nellis W.J., Moriarty J.A., Mitchell A.C., Ross M., Dandrea R.G., Ashcroft N.W., Holmes N.C., Gathers R.G.: Metals physics at ultrahigh pressure: aluminum, copper and lead as prototypes. Phys. Rev. Lett. 60, 1414–1447 (1988)

    Google Scholar 

  44. Bushman A.V., Zhernokletov M.V., Lomonosov I.V., Sutulov Y.N., Fortov V.E., Khishchenko K.V.: Investigation of plexiglas and teflon under double shock loading and in isentropic release waves - polymers equation of state at high-energy density. Dokl. Akad. Nauk. 329(5), 581–584 (1993)

    Google Scholar 

  45. Davis J.-P.: Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys. 99, 103512-1–103512-6 (2006)

    Google Scholar 

  46. Fortov V.E., Yakushev V.V., Kagan K.L., Lomonosov I.V., Maksimov E.G., Magnitskaya M.V., Postnov V.I., Yakusheva T.I.: Lithium at high dynamic pressure. J. Phys. Condens. Matter 14, 10809 (2002)

    Google Scholar 

  47. Fortov V.E., Altshuler L.V., Trunin R.F., Funtikov A.I.: Shock Waves and Extreme States of Matter: High-Pressure Shock Compression of Solids VII. Springer, New York (2004)

    Google Scholar 

  48. Al’tshuler L.V., Bakanova A.A., Bushman A.V., Dudoladov I.P., Zubarev V.N.: Evaporation of shock-compressed lead in release waves. Sov. Phys. JETP 46(5), 980–983 (1977)

    Google Scholar 

  49. Al’tshuler L.V., Bushman A.V., Zhernokletov M.V., Zubarev V.N., Leont’ev A.A., Fortov V.E.: Unload isentropes and equation of state of metals at high energy densities. Sov. Phys. JETP 51, 588–591 (1980)

    Google Scholar 

  50. Zel’dovich Ya.B., Landau L.D.: Relation of the liquid to gaseous state at metals. Zh. Eksp. Teor. Fiz 14, 32 (1944)

    Google Scholar 

  51. Wigner E.: On the interaction of electrons in metals. Phys. Rev. 46, 1002 (1934)

    MATH  Google Scholar 

  52. Ebeling V., Forster A., Fortov V.E., Gryaznov V.K., Polishchuk A.Ya.: Thermophysical Properties of Hot Dense Plasmas. B.G. Teubner Verlagsgesellschaft, Stuttgart (1991)

    Google Scholar 

  53. Norman G.E., Starostin A.N.: Thermodynamics of a strongly nonideal plasma. High Temp. 8, 381 (1970)

    Google Scholar 

  54. Saumon D., Chabrier G.: Fluid hydrogen at high density: the plasma phase transition. Phys. Rev. Lett. 62, 2397 (1988)

    Google Scholar 

  55. Filinov V.S., Fortov V.E., Bonitz M., Levashov P.R.: Phase transition in strongly degenerate hydrogen plasma. JETP Lett. 74, 384–387 (2001)

    Google Scholar 

  56. Al’tshuler L.V., Kormer S.B., Bakanova A.A., Trunin R.F.: Equations of state for aluminum, copper and lead in the high pressure region. Sov. Phys. JETP 11, 573–579 (1960)

    Google Scholar 

  57. Isbell W.H., Shipman F.H., Jones A.H.: Hugoniot equation of state measurements for eleven materials to five megabars. Report MSL-68-13. General Motors Corp., Mat. Sci. Lab (1968)

  58. Mitchell A.C., Nellis W.J.: Shock compression of aluminum, copper and tantalum. J. Appl. Phys. 52, 3363–3374 (1981)

    Google Scholar 

  59. Glushak B.L., Zharkov A.P., Zhernokletov M.V., Ternovoi V.Ya., Filimonov A.S., Fortov V.E.: Experimental investigation of the thermodynamics of dense plasmas formed from metals at high energy concentrations. Sov. Phys. JETP 69, 739–749 (1989)

    Google Scholar 

  60. Skidmore, I.C., Morris, E.: Experimental equation-of-state data for uranium and its interpretation in the critical region. In: Thermodynamics of Nuclear Materials, pp. 173–216. IAEA, Vienna (1962)

  61. Al’tshuler, L.V., Chekin, B.S.: Metrology of high pulsed pressures (in Russian). In: Proceedings of 1 Soviet Union Symposium on High Pressures, pp. 5–22. VNIIFTRI, Moskva (1984)

  62. Trunin R.F.: Compressibility of various substances at high shock pressures. Review. Bull. Acad. Sci. USSR Phys. Solid Earth 22, 103–106 (1986)

    Google Scholar 

  63. Trunin R.F., Panov M.V., Medvedev A.B.: Compressibility of iron, aluminum, molybdenum, titanium and tantalum at shock-wave pressures of 1–2.5 TPa. Sov. Phys. JETP Lett. 62, 591–594 (1995)

    Google Scholar 

  64. Trunin R.F., Panov M.V., Medvedev A.B.: Shock compressibilities of iron, aluminum and tantalum at terapascal pressures. Chem. Phis. 14(2–3), 97–99 (1995)

    Google Scholar 

  65. Knudson M.D., Lemke R.W., Hayes D.B., Hall C.A., Deeney C., Asay J.R.: Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys. 94(7), 4420–4431 (2003)

    Google Scholar 

  66. Simonenko V.A., Voloshin N.P., Vladimirov A.S., Nagibin A.P., Nogin V.P., Popov V.A., Sal’nikov V.A., Shoidin Yu.A.: Absolute measurements of shock compressibility of aluminum at pressures ≥ 1 TPa. Sov. Phys. JETP 61(4), 869–873 (1985)

    Google Scholar 

  67. Al’tshuler L.V., Kalitkin N.N., Kuz’ mina L.V., Chekin B.S.: Shock adiabats for ultrahigh pressures. Sov. Phys. JETP 45(1), 167–171 (1977)

    Google Scholar 

  68. Ragan C.E.: Shock compression measurements at 1 to 7 TPa. Phys. Rev. Ser. A 25, 3360–3375 (1982)

    Google Scholar 

  69. Ragan C.E.: Shock-wave experiment at threefold compression. Phys. Rev. Ser. A 29, 1391–1402 (1984)

    Google Scholar 

  70. Avrorin E.N., Vodolaga B.K., Voloshin N.P., Kuropatenko V.F., Kovalenko G.V., Simonenko V.A., Chernodolyuk B.T.: Experimental investigation of shell effects on the shock adiabats of aluminum and lead. Sov. Phys. JETP Lett. 43(2), 93–96 (1986)

    Google Scholar 

  71. Podurets M.A., Ktitorov V.M., Trunin R.F., Popov L.V., Matveev A.Ya., Pechenkin B.V., Sevast’yanov A.G.: Shock wave compression of aluminum at pressures of 1.7 TPa (in Russian). Teplofiz. Vys. Temp. 32(6), 952–955 (1994)

    Google Scholar 

  72. Trunin R.F., Podurets M.A., Simakov G.V., Popov L.V., Sevast’yanov A.G.: New data, obtained under strong shock wave conditions from an underground nuclear explosion, on the compressibility of aluminum, plexiglas and quartz. Sov. Phys. JETP Lett. 81, 464–470 (1995)

    Google Scholar 

  73. Avrorin E.N., Vodolaga B.K., Voloshin N.P., Kovalenko G.V., Kuropatenko V.F., Simonenko V.A., Chernodolyuk B.T.: Experimental study of the influence of electron shel structure on shock adiabats of condensed metals. Sov. Phys. JETP Lett. 66(2), 347–354 (1987)

    Google Scholar 

  74. Kalitkin N.N., Kuzmina L.V.: Reprint [in Russian] N35, Inst. Prikl. Matem. Akad. Akad. Nauk. SSSR, Moskva (1975)

    Google Scholar 

  75. Trunin R.F., Podurets M.A., Popov L.V., Zubarev V.N., Bakanova A.A., Ktitorov V.M., Sevastyanov A.G., Simakov G.V., Dudoladov I.P.: Measurement of the iron compressibility at pressures of 5.5 TPa. Sov. Phys. JETP 75, 777–780 (1992)

    Google Scholar 

  76. Trunin R.F., Podurets M.A., Moiseev B.N., Simakov G.V., Sevastyanov A.G.: Determination of the shock compressibility of iron at pressures up to 10 TPa (100 Mbar). Sov. Phys. JETP 76, 1095–1098 (1993)

    Google Scholar 

  77. Al’tshuler L.V., Bakanova A.A.: Electronic structure and compressibility of metals at high pressures [in Russian]. Usp. Fiz. Nauk. 95(2), 193–215 (1968)

    Google Scholar 

  78. Desjarlais, M.P.: Personnel communication (2006)

  79. Kerley G.I.: Theoretical equation of state for aluminum. Intern. J. Impact Eng. 5, 441–449 (1987)

    Google Scholar 

  80. Neal T.: Dynamic determination of the Grüneisen coefficient in aluminum and aluminum alloys for densities up to 6 Mg/m3. Phys. Rev. B 14, 5172–5181 (1976)

    Google Scholar 

  81. Nellis W.J., Mitchell A.C., Young D.A.: Equation-of-state measurements for aluminum, copper, and tantalum in the pressure range 80–440 GPa (0.8–4.4 Mbar). J. Appl. Phys. 93(1), 304–310 (2003)

    Google Scholar 

  82. Bakanova A.A, Dudoladov I.P., Sutulov Yu.N.: Shock compressibility of porous tungsten, molybdenum, copper, and aluminum in low pressure range. J. Appl. Mech. Technol. Phys 15, 241 (1974)

    Google Scholar 

  83. McQueen R.G., Fritz J.N., Morris C.E.: The velocity of sound behind strong shock waves in 2024 Al. In: Asay, J.R., Graham, R.A., Straub, G.K. (eds) Shock Waves in Condensed Matter, vol 83, pp. 95–98. North-Holland, Amsterdam (1984)

    Google Scholar 

  84. Fortov V.E., Lomonosov I.V.: Thermodynamics of extreme states of matter. Pure Appl. Chem. 69(4), 893–904 (1997)

    Google Scholar 

  85. Fortov V.E., Krasnikov Yu.G.: On the construction of a thermodynamically complete equation of state of nonideal plasma from dynamic experiments. Sov. Phys. JETP 32, 897 (1971)

    Google Scholar 

  86. Avrorin E.N., Vodolaga B.K., Simonenko V.A., Fortov V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36, 337 (1993)

    Google Scholar 

  87. Al’tshuler L.V., Trunin R.F., Krupnikov K.K., Panov N.V.: Explosive laboratory devices for shock wave compression studies. Phys. Usp. 39(5), 539–544 (1996)

    Google Scholar 

  88. Al’tshuler L.V., Trunin R.F., Urlin V.D., Fortov V.E., Funtikov A.I.: Development of dynamic high-pressure techniques in Russia. Phys. Usp. 42(3), 261–280 (1999)

    Google Scholar 

  89. Fortov V.E., Khrapak A.G., Khrapak S.A., Molotkov V.I., Petrov O.F.: Dusty plasmas. Phys. Usp. 47, 447 (2004)

    Google Scholar 

  90. Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E.: Shock-Wave Phenomena in Condensed Media. Yanus-K, Moscow (1996)

    Google Scholar 

  91. Hogan, W.J. (eds): Energy from Inertial Fusion (sti/pub/944). Technical report. International Atomik Energy Agency, Vienna (1995)

    Google Scholar 

  92. Gryaznov V.K., Fortov V.E., Zhernokletov M.V., Simakov G.V., Trunin R.F., Trusov L.I., Iosilevski I.L.: Shock compression and thermodynamics of highly nonideal metallic plasma. JETP 87(4), 678–690 (1998)

    Google Scholar 

  93. Zababakhin E.I., Zababakhin I.E.: Unlimited Cumulation Phenomena. Nauka, Moscow (1990)

    Google Scholar 

  94. Grishechkin S.K., Gruzdev S.K., Gryaznov V.K., Zhernokletov1 M.V., Iĺkaev R.I., Iosilevskii I.L., Kashintseva1 G.N., Kirshanov S.I., Manachkin S.F., Mintsev V.B., Mikhailov A.L., Mezhevov A.B., Mochalov M.A., Fortov V.E., Khrustalev V.V., Shuikin A.N., Yukhimchuk A.A.: Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium. JETP Lett. 80, 398–404 (2004)

    Google Scholar 

  95. Bazanov O.V., Bespalov V.E., Zharkov A.P., Rumiantsev B.V., Fedotova T.V.: Irregular reflection of conically converging shock waves in plexiglas and copper. High Temp. 23(5), 781–787 (1986)

    Google Scholar 

  96. Fortov V.E., Ilkaev R.I., Arinin V.A., Burtzev V.V., Golubev V.A., Iosilevskiy I.L., Khrustalev V.V., Mikhailov A.L., Mochalov M.A., Ternovoi V.Ya., Zhernokletov M.V.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99, 18500 (2007)

    Google Scholar 

  97. Hawke P.S., Burgess T.J., Duerre D.E., Huebel J.G, Keeler R.N., Klapper H., Wallace W.C.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41, 994 (1978)

    Google Scholar 

  98. Pavlovski, A.I., et al.: Isentropic solid hydrogen compression by ultrahigh magnetic field pressure in megabar range in Megagauss Technology and Pulsed Power Applications. In: Fowler, C.M., Caird, R.S., Erickson, D. J. (eds.) Plenum Press, New York (1987)

  99. Frontiers in High Energy Density Physics: The X-Games of Contemporary Science. The National Academies Press, Washington, D.C. (2003)

    Google Scholar 

  100. Ostashev V.E., Lebedev E.F., Fortov V.E.: The problems of real- ization of electrodynamic acceleration regime in railguns with plasma armature. In: Cowan, M., Spielman, R.B. (eds) Megagauss Magnetic Field Generation and Pulsed Power Applications Pt. II., pp. 1061. Nova Science, New York (1994)

    Google Scholar 

  101. Knudson M.D., Hanson D.L., Bailey J.E., Hall C.A., Asay J.R., Anderson W.W.: Equation of state measurements in liquid deuterium to 70 Gpa. Phys. Rev. Lett. 87, 225501 (2001)

    Google Scholar 

  102. Grabovskii E.V., Vorob’ev O.Yu., Dyabilin K.S., Lebedev M.E., Ostrik A.V., Smirnov V.P., Fortov V.E.: Excitation of intense shock waves by soft X radiation from a z-pinch plasma. JETP Lett. 60, 1 (1994)

    Google Scholar 

  103. Da Silva L.B., Celliers P., Collins G.W., Budil K.S., Holmes N.C., Barbee T.W. Jr, Hammel B.A., Kilkenny J.D., Wallace R.J., Ross M., Cauble R., Ng A., Chiu G.: Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett. 78, 478–483 (1997)

    Google Scholar 

  104. Anisimov A.I., Prokhorov A.M., Fortov V.E.: Application of high-power lasers to study matter at ultrahigh pressure. Sov. Phys. Usp. 27, 181 (1984)

    Google Scholar 

  105. Pukhov A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47–101 (2003)

    Google Scholar 

  106. Krasyuk I.K., Pashinin P.P., Semenov A.Yu., Fortov V.E.: Investigation of thermophysical and mechanical properties of matter under extremal conditions. Quantum Electron 33, 593–608 (2003)

    Google Scholar 

  107. Mourou G.A., Kajima T., Bulanov S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006)

    Google Scholar 

  108. Matsui M.: Molecular dynamics study of iron at Earth’s inner core condition. In: Schmidt, S.C., Shaner, J.W., Samara, G.A., Ross, M. (eds) High Pressure Science and Technology—1993 (AIP Conf. Proceed. 309), pp. 887–890. AIP Press, New York (1994)

    Google Scholar 

  109. Cohen R.E., Stixrude L., Papaconstantopoulos D.A.: An accurate tight-binding model for iron at high pressures: towards high temperatures simulations of the Earth’s core. In: Schmidt, S.C., Shaner, J.W., Samara, G.A., Ross, M. (eds) High Pressure Science and Technology—1993 (AIP Conf. Proceed. 309), pp. 891–894. AIP Press, New York (1994)

    Google Scholar 

  110. Sherman, M.D.: Electronic structure, entropy, and the high-pressure stability of bcc iron. In: Schmidt, S.C., Shaner, J.W., Samara, G.A., Ross, M. (eds.) High Pressure Science and Technology—1993 (AIP Conf. Proceed. 309), pp. 895–898, New York (1994)

  111. Boehler R.: Temperatures in the Earth’s core from melting-point measurements of iron at high static pressure. Science 363, 534–536 (1993)

    Google Scholar 

  112. Williams Q., Jeanloz R., Bass J., Svendsen B., Ahrens J.: The melting curve of iron to 250 GPa: a constraint on the temperature at Earth’s core. Science 236, 181–182 (1987)

    Google Scholar 

  113. Shen G., Mao H.K., Hemley R., Duffy T.S., Rivers M.L.: Melting and crystal structure of iron at high pressures and temperatures. Geophys. Res. Lett. 25, 373–376 (1998)

    Google Scholar 

  114. Saxena S.K., Dubrovinsky L.A.: Iron phases at high pressures and temperatures: phase transition and melting. Am. Mineral. 85, 372–375 (2000)

    Google Scholar 

  115. Nguyen J.H., Holmes N.C.: Melting of iron at the physical conditions of the Earth’s core. Nature 427, 339–342 (2004)

    Google Scholar 

  116. Mao H.K., Bell P.M.: Equation of state of MgO and e Fe under static pressure conditions. J. Geophys. Res. 84(B9), 4533–4536 (1979)

    Google Scholar 

  117. Mao H.K., Wu Y., Chen L.C., Shu J.F.: Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: implications for composition of the core. J. Geophys. Res. 95(B13), 21737–21742 (1990)

    Google Scholar 

  118. Brown J.M., McQueen R.G.: Melting of iron under core conditions. Geophys. Res. Lett. 7, 533–536 (1980)

    Google Scholar 

  119. Brown J.M., McQueen R.G.: Phase transitions, Gruneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. 91(B7), 7485–7494 (1986)

    Google Scholar 

  120. McQueen R.G., Marsh S.P.: Equation of state for nineteen metallic elements. J. Appl. Phys. 31, 1253–1269 (1960)

    Google Scholar 

  121. Al’tshuler L.V., Bakanova A.A., Trunin R.F.: Shock adiabats and zero isotherms of seven metals at high pressures. Sov. Phys. JETP 15, 65–74 (1962)

    Google Scholar 

  122. Krupnikov K.K., Bakanova A.A., Brazhnik M.I., Trunin R.F.: Investigation of shock compressibility of titanum, molybdenum, tantalum and iron. Sov. Phys. Dokl. 8, 205–208 (1963)

    Google Scholar 

  123. Brown J.M., Fritz J.N., Hixson R.S.: Hugoniot data for iron. J. Appl. Phys. 88(9), 5496–5498 (2000)

    Google Scholar 

  124. Trunin R.F., Podurets M.A., Simakov G.V., Popov L.V., Moiseev B.N.: Experimental verification of the Thomas–Fermi model for metals under high pressure. Sov. Phys. JETP 35, 550–552 (1972)

    Google Scholar 

  125. Trunin R.F., Medvedev A.B., Funtikov A.I., Podurets M.A., Simakov G.V., Sevast’yanov A.G.: Shock compression of porous iron, copper, and tungsten and their equation of state in terapascal pressure range. Sov. Phys. JETP 68, 356–361 (1989)

    Google Scholar 

  126. Trunin R.F., Simakov G.V., Sutulov Yu.N., Medvedev A.B., Rogozkin B.D., Fedorov Yu.E.: Compression of porous metals in shock waves. Sov. Phys. JETP 69, 580–588 (1989)

    Google Scholar 

  127. Zhernokletov M.V., Simakov G.V., Sutulov Yu.N., Trunin R.F.: Unload isentrops of aluminium, iron, molybdenum, lead and tantal (in russian). Teplofiz. Vys. Temp. 70, 40–43 (1995)

    Google Scholar 

  128. Grosse A.V., Kirshenbaum A.D.: The densities of liquid iron and nickel and estimate of their critical temperature. J. Inorg. Nucl. Chem. 25, 331–334 (1963)

    Google Scholar 

  129. Hixson R.S., Winkler M.A., Hodgson M.L.: Sound speed and thermophysical properties of liquid iron and nickel. Phys. Rev. B 32(10), 6485–6491 (1990)

    Google Scholar 

  130. Beult M., Pottlacher G., Jager H.: Thermophysical properties of liquid iron. Int. J. Thermophys. 15(6), 1323–1331 (1994)

    Google Scholar 

  131. Young D.A., Alder B.J.: Critical points of metals from the van der Waals model. Phys. Rev. A 3, 364–371 (1971)

    Google Scholar 

  132. Hornung K.: Liquid metal coexistence properties from corresponding states and third law. J. Appl. Phys. 46, 2548–2558 (1975)

    Google Scholar 

  133. Volkov L.P., Voloshin N.P., Vladimirov A.S., Nogin V.N., Simonenko V.A.: Shock compressibility of aluminum at pressure 10 Mbar. Sov. Phys. JETP Lett. 31, 588–591 (1981)

    Google Scholar 

  134. Neal T.: Mach waves and reflected rarefactions in aluminum. J. Appl. Phys. 46, 2521–2527 (1975)

    Google Scholar 

  135. Al’tshuler L.V., Kormer S.B., Brazhnik M.I., Vladimirov L.A., Speranskaya M.P., Funtikov A.I.: The isentropic compressibility of aluminum, copper, lead at high pressures. Sov. Phys. JETP 11(4), 766–775 (1960)

    Google Scholar 

  136. Young D.: A Soft-Sphere Model for Liquid Metals. Report UCRL-52352. Lawrence Livermore Lab., Livermore (1977)

    Google Scholar 

  137. Ternovoi V.Ya., Filimonov A.S., Fortov V.E., Kvitov S.V., Nikolaev D.N., Pyalling A.A.: Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 Gpa. Physica B 265, 6 (1999)

    Google Scholar 

  138. Fortov V.E., Ternovoi V.Ya., Zhernokletov M.V., Mochalov M.A., Mikhailov A.L., Filimonov A.S., Pyalling A.A., Mintsev V.B., Gryaznov V.K., Iosilevskii I.L.: Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressure. JETP 97, 259–278 (2003)

    Google Scholar 

  139. Fortov V.E., Gryaznov V.K., Mintsev V.B., Ternovoi V.Ya., Iosilevski I.L., Zhernokletov M.V., Mochalovet M.A.: Thermophysical properties of shock compressed argon and xenon. Contrib. Plasma Phys. 41, 215–218 (2001)

    Google Scholar 

  140. Lang, G.: Density of liquid elements. In: Lide, D.R. (ed.) CRC Handbook of Chemistry and Physics, pp. 4-126–4-134. CRC Press, London (1994–1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Lomonosov.

Additional information

Communicated by K. Takayama.

The paper was submitted upon invitation from the Editor-in-Chief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortov, V.E., Lomonosov, I.V. Shock waves and equations of state of matter. Shock Waves 20, 53–71 (2010). https://doi.org/10.1007/s00193-009-0224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0224-8

Keywords

PACS

Navigation