Skip to main content
Log in

Three-Dimensional Numerical Modeling of Lava Dynamics Using the Smoothed Particle Hydrodynamics Method

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

Lava domes and lava flows are major manifestations of effusive volcanic eruptions. Less viscous lava tends to flow long distances depending on the volcanic slope topography, the eruption rate, and the viscosity of the erupted magma. When magma is highly viscous, its eruption to the surface leads to the formation of lava domes and their growth. The meshless smoothed particle hydrodynamics (SPH) method is used in this paper to simulate lava dynamics. We describe the SPH method and present a numerical algorithm to compute lava dynamics models. The numerical method is verified by solving a model of cylindrical dam-break fluid flow, and the modelled results are compared to the analytical solution of the axisymmetric thin-layer viscous current problem. The SPH method is applied to study three models of lava advancement along the volcanic slope, when the lava viscosity is constant, depends on time and on the volume fraction of crystals in the lava. Simulation results show characteristic features of lava flows, such as lava channel and tube formation, and lava domes, such as the formation of a highly viscous carapace versus a less viscous dome core. Finally, the simulation results and their dependence on a particle size in the SPH method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., and Petersen, M., An image-based approach to extreme scale in situ visualization and analysis, in SC '14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2014, pp. 424–434. https://doi.org/10.1109/SC.2014.40

  2. Bender, J. and Koschier, D., Divergence-free smoothed particle hydrodynamics, in Proceedings of the 14th ACM SIGGRAPH Eurographics Symposium on Computer Animation, SCA ’15, New York, NY, USA, Association for Computing Machinery, 2015, pp. 147–155.

  3. Bender, J. and Koschier, D., Divergence-free SPH for incompressible and viscous fluids, IEEE Transactions on Visualization and Computer Graphics, 2017, vol. 23, no. 3, pp. 1193–1206.

    Article  Google Scholar 

  4. Benz, W. and Asphaug, E., Simulations of brittle solids using smoothed particle hydrodynamics, Comput. Phys. Commun., 1995, vol. 87, pp. 253–265.

    Article  Google Scholar 

  5. Blake, S., Viscoplastic models of lava domes, in Lava Flows and Domes; Emplacement Mechanisms and Hazard Implications, Fink, J.H., Ed., N.Y.: Springer, 1990, pp. 88–126.

    Google Scholar 

  6. Brookshaw, L., A method of calculating radiative heat diffusion in particle simulations, Publications of the Astronomical Society of Australia, 1985, vol. 6, no. 2, pp. 207–210.

    Article  Google Scholar 

  7. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford: Oxford University Press, 1961.

    Google Scholar 

  8. Cordonnier, B., Lev, E., and Garel, F., Benchmarking lava-flow models, in Detecting, Modelling and Responding to Effusive Eruptions, Harris, A.J.L., De Groeve, T., Garel, F., and Carn, S.A., Eds., Geological Society, London, Special Publications 426, 2015. https://doi.org/10.1144/SP426.7

    Book  Google Scholar 

  9. Costa, A., Viscosity of high crystal content melts: Dependence on solid fraction, Geophys. Res. Lett., 2005, vol. 32, p. L22308. https://doi.org/10.1029/2005GL0243033

    Article  Google Scholar 

  10. Costa, A., Caricchi, L., and Bagdassarov, N., A model for the rheology of particle-bearing suspensions and partially molten rocks, Geochem. Geophys. Geosys., 2009, vol. 10, no. 3, p. Q03010.

  11. Gel’fand, I.M. and Shilov, G.E., Generalized Functions, vol. 1, Properties and Operations, Providence: AMS Chelsea Publishing, 1964.

  12. Gingold, R. and Monaghan, J.J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, 1977, vol. 181, pp. 375–389.

    Article  Google Scholar 

  13. Griffiths, R.W., The dynamics of lava flows, Ann. Rev. Fluid Mech., 2000, vol. 32, pp. 477–518.

    Article  Google Scholar 

  14. Hale, A.J. and Wadge, G., Numerical modeling of the growth dynamics of a simple silicic lava dome, Geophys. Res. Lett., 2003, vol. 30, no. 19. https://doi.org/10.1029/2003GL018182

  15. Harnett, C.E., Thomas, M.E., Purvance, M.D., and Neuberg, J., Using a discrete element approach to model lava dome emplacement and collapse, J. Volcanol. Geotherm. Res., 2018, vol. 359, pp. 68–77.

    Article  Google Scholar 

  16. Hérault, A., Bilotta, G., Vicari, A., Rustico, E., and Del Negro, C., Numerical simulation of lava flow using a GPU SPH model, Ann. Geophys., 2011, vol. 54, pp. 600–620.

    Google Scholar 

  17. Huppert, H.E., The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid Mech., 1982, vol. 121, pp. 43–58.

    Article  Google Scholar 

  18. Husain, T., Elsworth, D., Voight, B., Mattioli, G., and Jansma, P., Influence of conduit flow mechanics on magma rheology and the growth style of lava domes, Geophys. J. Int., 2018, vol. 213, pp. 1768–1784.

    Article  Google Scholar 

  19. Husain, T., Elsworth, D., Voight, B., Mattioli, G., and Jansma, P., Morphologic variation of an evolving dome controlled by the extrusion of finite yield strength magma, J. Volcanol. Geotherm. Res., 2019, vol. 370, pp. 51–64.

    Article  Google Scholar 

  20. Ismail-Zadeh, A. and Tackley, P., Computational Methods for Geodynamics, Cambridge: Cambridge University Press, 2010.

    Book  Google Scholar 

  21. Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M., Implicit incompressible SPH, IEEE Transactions on Visualization and Computer Graphics, 2014a, vol. 20, pp. 426–435.

    Article  Google Scholar 

  22. Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M., SPH fluids in computer graphics, in Eurographics State of the Art Reports, Lefebvre, S. and Spagnuolo, M., Eds., 2014b, pp. 21–42.

    Google Scholar 

  23. Jeffrey, D. and Acrivos, A., The rheological properties of suspensions of rigid particles, AIChE J., 1976, vol. 22, pp. 417–432.

    Article  Google Scholar 

  24. Lejeune, A. and Richet, P., Rheology of crystal-bearing silicate melts: An experimental study at high viscosity, J. Geophys. Res., 1995, vol. 100, pp. 4215–4229.

    Article  Google Scholar 

  25. Lister, J., Viscous flows down an inclined plane from point and line sources, J. Fluid Mech., 1992, vol. 242, pp. 631–653

    Article  Google Scholar 

  26. Liu, G.R. and Liu, M.B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method, Singapore: World Scientific, 2003.

    Book  Google Scholar 

  27. Lucy, L., A numerical approach to the testing of fission hypothesis, Astron. J., 1977, vol. 82, pp. 1013–1024.

    Article  Google Scholar 

  28. Mardles, E., Viscosity of suspensions and the Einstein equation, Nature, 1940, vol. 145, p. 970.

    Article  Google Scholar 

  29. Melnik, O. and Sparks, R.S.J., Nonlinear dynamics of lava dome extrusion, Nature, 1999, vol. 402, pp. 37–41.

    Article  Google Scholar 

  30. Monaghan, J.J., Smoothed particle hydrodynamics, Ann. Rev. Astr. Astrophys., 1992, vol. 30, pp. 543–574.

    Article  Google Scholar 

  31. Starodubtsev, I., Vasev, P., Starodubtseva, Y., and Tsepelev, I., Numerical simulation and visualization of lava flows, Scientific Visualization, 2022, vol. 14, no. 5, pp. 66–76. https://doi.org/10.26583/sv.14.5.05

    Article  Google Scholar 

  32. Starodubtseva, Y., Starodubtsev, I., Ismail-Zadeh, A., Tsepelev, I., Melnik, O., and Korotkii, A., A method for magma viscosity assessment by lava dome morphology, J. Volcanol. Seismol., 2021, vol. 15, no. 3, pp. 159–168. https://doi.org/10.1134/S0742046321030064

    Article  Google Scholar 

  33. Stasiuk, M.V., Jaupart, C., and Sparks, R.S.J., On the variations of flow rate in non-explosive lava eruptions, Earth Planet. Sci. Lett., 1993, vol. 114, pp. 505–516.

    Article  Google Scholar 

  34. Tsepelev, I., Ismail-Zadeh, A., Melnik, O., and Korotkii, A., Numerical modelling of fluid flow with rafts: An application to lava flows, J. Geodyn., 2016, vol. 97, pp. 31–41.

    Article  Google Scholar 

  35. Tsepelev, I., Ismail-Zadeh, A., Starodubtseva, Y., Korotkii, A., and Melnik, O., Crust development inferred from numerical models of lava flow and its surface thermal measurements, Ann. Geophys., 2019, vol. 61, no. 2, p. VO226. https://doi.org/10.4401/ag-7745

    Article  Google Scholar 

  36. Tsepelev, I., Ismail-Zadeh, A., and Melnik, O., Lava dome morphology inferred from numerical modelling, Geophys. J. Intern., 2020, vol. 223, no. 3, pp. 1597–1609.

    Article  Google Scholar 

  37. Tsepelev, I.A., Ismail-Zadeh, A.T., and Melnik, O.E., Lava dome evolution at Volcán de Colima, México during 2013: Insights from numerical modeling, J. Volcanol. Seismol., 2021, vol. 15, no. 6, pp. 491–501.

    Article  Google Scholar 

  38. Vasev, P., Porshnev, S., Forghani, M., Manakov, D., Bakhterev, M., and Starodubtsev, I., Constructing 3D scenes of scientific visualization using CinemaScience Format, in Proceedings of the 31st International Conference on Computer Graphics and Vision (GraphiCon 2021), Nizhny Novgorod, Russia, September 27–30, 2021, Galaktionov, V., Voloboy, A., and Bondarev, A., Eds., CEUR Workshop Proceedings, 2021, vol. 3027, pp. 296‒307. https://ceur-ws.org/Vol-3027/paper29.pdf.

  39. Vasev, P., Bakhterev, M., Manakov, D., Porshnev, S., and Forghani, M., On expressiveness of visualization systems' interfaces, Scientific Visualization, 2022, vol. 14, no. 5, pp. 77–95. https://doi.org/10.26583/sv.14.5.06

    Article  Google Scholar 

  40. Weiler, M., Koschier, D., Brand, M., and Bender, J., A physically consistent implicit viscosity solver for SPH fluids, Computer Graphics Forum, 2018, vol. 37, no. 2, pp. 145‒155. https://doi.org/10.1111/cgf.13349

    Article  Google Scholar 

  41. Zago, V., Bilotta, G., Hérault, A., et al., Semi-implicit 3D SPH on GPU for lava flows, J. Comp. Phys., 2018, vol. 375, pp. 854–870. https://doi.org/10.1016/j.jcp.2018.07.060

    Article  Google Scholar 

  42. Zeinalova, N., Ismail–Zadeh, A., Melnik, O.E., Tsepelev, I., and Zobin, V.M., Lava dome morphology and viscosity inferred from data-driven numerical modeling of dome growth at Volcán de Colima, Mexico during 2007‒2009, Frontiers in Earth Science, 2021, vol. 9, p. 735–914. https://doi.org/10.3389/feart.2021.735914.

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. Korotkii, O. Melnik, and I. Utkin for fruitful discussions and to anonymous reviewers for constructive comments. Numerical experiments were carried out on the Uran computing cluster (N.N. Krasovsky Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg).

Funding

The work was supported by the Russian Foundation for Basic Research (RFBR grant 20-51-12002) and the German Science Foundation (DFG grant IZ203/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Ismail-Zadeh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starodubtsev, I.S., Starodubtseva, Y.V., Tsepelev, I.A. et al. Three-Dimensional Numerical Modeling of Lava Dynamics Using the Smoothed Particle Hydrodynamics Method. J. Volcanolog. Seismol. 17, 175–186 (2023). https://doi.org/10.1134/S0742046323700185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046323700185

Keywords:

Navigation