Skip to main content
Log in

An analysis of multisource tropospheric hydrostatic delays and their implications for GPS/GLONASS PPP-based zenith tropospheric delay and height estimations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

To obtain better zenith hydrostatic delay (ZHD) corrections for global navigation satellite system (GNSS) applications, seven types of Vienna mapping function 1 (VMF1) and VMF3-like ZHD models provided by the Vienna University of Technology (TU Wien, TUW), University of New Brunswick (UNB) and GeoForschungsZentrum Potsdam (GFZ) are evaluated. Firstly, we find that the conventional method for implementing VMF1/VMF3-like ZHD models has issues when applied over regions with highly variable topography. Therefore, we propose an improved implementation method (called Trop_vertical) based on an empirical model as well as a second version, called Trop_vertical-II, which further corrects for small residual biases. The results show that the Trop_vertical-II can effectively reduce the large errors reported in previous studies for complex terrains and yields an improvement in global accuracy of up to 50% over the conventional method. Then, the multisource ZHD models are evaluated and intercompared globally. The results reveal some deficiencies with the TUW-VMF1 over certain regions. The newly developed ZHD models from the TUW (TUW-VMF3) and GFZ (GFZ-VMF3) both achieve reliable performances globally, but there is a systematic difference (~ 2.9 mm) between them. The forecast VMF1/VMF3-like models can well capture the rapid ZHD variation in challenging weather conditions. Finally, the impacts of a priori ZHD errors on both GPS-only and GPS/GLONASS precise point positioning (PPP)-based zenith total delay (ZTD) and height solutions are examined globally. The results suggest that the sensitivities of PPP-ZTD/height solutions to a priori ZHD errors decrease by adding GLONASS data at high latitudes but increase at low latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

GNSS and in situ pressure data are provided by the International GNSS Service (IGS) and the Polar Earth Observing Network (POLENET), which can be accessed from ftp://cddis.gsfc.nasa.gov/ and ftp://data-out.unavco.org/. The legacy VMF1/VMF3 models are available at http://vmf.geo.tuwien.ac.at/. The GFZ-VMF1/VMF3 models are available at ftp.gfz-potsdam.de/GNSS/products/gfz-vmf1/. The UNB-VMF1 model is available at http://unb-vmf1.gge.unb.ca/. The ERA5 data were obtained from Copernicus Climate Data Store.

References

  • Balidakis K, Nilsson T, Zus F, Glaser S, Heinkelmann R, Deng Z, Schuh H (2018) Estimating integrated water vapor trends from VLBI, GPS, and Numerical Weather Models: Sensitivity to tropospheric parameterization. J Geophys Res Atmos 123(12):6356–6372. https://doi.org/10.1029/2017jd028049

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring T, Anthes R, Rocken C, Ware R (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meterology 33(3):379–386

    Article  Google Scholar 

  • Bock O, Bouin M, Doerflinger E, Collard P, Masson F, Meynadier R, Nahmani S, Koite M, Balawan K, Dide F, Ouedraogo D, Pokperlaar S, Ngamini J, Lafore J, Janicot S, Guichard F, Nuret M (2008) West African Monsoon observed with ground-based GPS receivers during African Monsoon Multidisciplinary Analysis (AMMA). J Geophys Res Atmos. https://doi.org/10.1029/2008jd010327

    Article  Google Scholar 

  • Bock O, Parracho A (2019) Consistency and representativeness of integrated water vapour from ground-based GPS observations and ERA-Interim reanalysis. Atmos Chem Phys 19(14):9453–9468

    Article  Google Scholar 

  • Bock O (2020) Standardization of ZTD screening and IWV conversion, in: Advanced GNSS Tropospheric Products forMonitoring SevereWeather Events and Climate: COST Action ES1206 Final Action Dissemination Report, edited by Jones J, Guerova G, Douša J, Dick G, de Haan S, Pottiaux E, Bock O, Pacione R, van Malderen R, chap. 5, pp. 314–324, Springer International Publishing, https://doi.org/10.1007/978-3-030-13901-8_5

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res Solid Earth 111:B02406. https://doi.org/10.1029/2005JB003629

    Article  Google Scholar 

  • Böhm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683. https://doi.org/10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Böhm J, Kouba J, Schuh H (2008) Forecast vienna mapping functions 1 for real-time analysis of space geodetic observations. J Geod 83:397–401. https://doi.org/10.1007/s00190-008-0216-y

    Article  Google Scholar 

  • Böhm J, Möller G, Schindelegger M, Pain G, Weber R (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut 19(3):433–441. https://doi.org/10.1007/s10291-014-0403-7

    Article  Google Scholar 

  • Byram S, Hackman C, Slabinski V, Tracey J (2011) Computation of a high-precision GPS-based troposphere product by the USNO. In: Proceedings of ION GNSS 2011, Institute of Navigation, Portland, Oregon, USA, pp 572–578

  • Byun S, Bar-Sever Y (2009) A new type of troposphere zenith path delay product of the international GNSS Service. J Geod 83(3–4):1–7

    Article  Google Scholar 

  • Davis J, Herring T, Shapiro I, Rogers A, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607. https://doi.org/10.1029/RS020i006p01593

    Article  Google Scholar 

  • Douša J, Eliaš M, Václavovic P, Eben K, Krč P (2018) A two-stage tropospheric correction model combining data from GNSS and numerical weather model. GPS Solut. https://doi.org/10.1007/s10291-018-0742-x

    Article  Google Scholar 

  • Geiger A (1988) Atmospheric refraction and other important biases in GPS carrier phase observations. Atmos Eff Geod Space Meas Monogr 12:1543

    Google Scholar 

  • Hobiger T, Ichikawa R, Koyama Y, Kondo T (2008) Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J Geophys Res Atmos. https://doi.org/10.1029/2008jd010503

    Article  Google Scholar 

  • Kouba J (2008) Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1). J Geod 82(4–5):193–205. https://doi.org/10.1007/s00190-007-0170-0

    Article  Google Scholar 

  • Kouba J (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. J Geod 83(3–4):199–208

    Article  Google Scholar 

  • Landskron D, Böhm J (2017) VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J Geod 92(4):349–360. https://doi.org/10.1007/s00190-017-1066-2

    Article  Google Scholar 

  • Larson K, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300:1421–1424

    Article  Google Scholar 

  • Leandro RF, Langley RB, Santos MC (2008) UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques. GPS Solut 12:65–70

    Article  Google Scholar 

  • Li T, Wang L, Chen R, Fu W, Xu B, Jiang P, Liu J, Zhou H (2021) Han Y (2021) Refining the empirical global pressure and temperature model with the ERA5 reanalysis and radiosonde data. J Geod 95:31. https://doi.org/10.1007/s00190-021-01478-9

    Article  Google Scholar 

  • Li X, Dick G, Ge M, Heise S, Wickert J, Bender M (2014) Real-time GPS sensing of atmospheric water vapor: precise point positioning with orbit, clock and phase delay corrections. Geophys Res Lett 41(10):3615–3621

    Article  Google Scholar 

  • Liu T, Zhang B, Yuan Y, Li M (2018) Real-time precise point positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling. J Geod 92:1267–1283

    Article  Google Scholar 

  • Lu C, Li X, Zus F, Heinkelmann R, Dick G, Ge M, Wickert J, Schuh H (2017) Improving BeiDou real-time precise point positioning with numerical weather models. J Geod 91(9):1019–1029. https://doi.org/10.1007/s00190-017-1005-2

    Article  Google Scholar 

  • Mao J, Wang Q, Liang Y, Cui T (2021) A new simplified zenith tropospheric delay model for real-time GNSS applications. GPS Solut. https://doi.org/10.1007/s10291-021-01092-4

    Article  Google Scholar 

  • National Geophysical Data Center, Data announcement 88-MGG-02, Digital relief of the surface of the Earth, NOAA, Boulder, Colo., (1988)

  • Niell A (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res Solid Earth 101(B2):3227–3246

    Article  Google Scholar 

  • Nikolaidou T, Balidakis K, Nievinski F, Santos M, Schuh H (2018) Impact of different NWM-derived mapping functions on VLBI and GPS analysis. Earth, Planets and Space 70(1):95

    Article  Google Scholar 

  • Rüeger J (2002) Refractive index formulae for electronic distance measurements with radio and millimetre waves. Unisurv Rep. vol 109, pp 758–766, Univerity of New South Wales, Sydney, Australia.

  • Shoji Y (2009) A study of near real-time water vapor analysis using a nationwide dense GPS network of Japan. J Meteorol Soc Jpn 87:1–18

    Article  Google Scholar 

  • Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. J Geod 83(10):943. https://doi.org/10.1007/s00190-009-0311-8

    Article  Google Scholar 

  • Tregoning P, Herring T (2006) Impact of a priori hydrostatic zenith delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:L23303. https://doi.org/10.1029/2006GL027706

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114(B13):9403. https://doi.org/10.1029/2009JB006344

    Article  Google Scholar 

  • Urquhart L, Santos M (2011) Development of a VMF1-like service at UNB (Doctoral dissertation, Fredericton Department of Geodesy and Geomatics Engineering of University of New Brunswick).

  • Urquhart L, Nievinski F, Santos M (2013) Assessment of troposphere mapping functions using three-dimensional ray-tracing. GPS Solut 18(3):345–354. https://doi.org/10.1007/s10291-013-0334-8

    Article  Google Scholar 

  • Wang C, Liou Y, Yeh T (2008) Impact of surface meteorological measurements on GPS height determination. Geophys Res Lett 35(23)

  • Wang J, Zhang L, Dai A, Van Hove T, Van Baelen J (2007) A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J Geophys Res. https://doi.org/10.1029/2006jd007529

    Article  Google Scholar 

  • Wijaya D, Böhm J, Karbon M, Kràsnà H, Schuh H (2013) Atmospheric pressure loading. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer, Berlin, Heidelberg, pp 137–157

    Chapter  Google Scholar 

  • Xu P, Shi C, Fang R, Liu J, Niu X, Quan Z, Yanagidani T (2013) High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. J Geod 87:361–372

    Article  Google Scholar 

  • Yuan Y, Holden L, Kealy A, Choy S, Hordyniec P (2019) Assessment of forecast Vienna Mapping Function 1 for real-time tropospheric delay modeling in GNSS. J Geod. https://doi.org/10.1007/s00190-019-01263-9

    Article  Google Scholar 

  • Zhang B, Ou J, Yuan Y, Li Z (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55:1919–1928

    Article  Google Scholar 

  • Zhang H, Yuan Y, Li W, Zhang B, Ou J (2018) A grid-based tropospheric product for China using a GNSS network. J Geod 92(7):765–777

    Article  Google Scholar 

  • Zhang W, Zhang H, Liang H, Lou Y, Cai Y, Zhou Y, Liu W (2019) On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China. J Geod 93(10):1897–1909. https://doi.org/10.1007/s00190-019-01290-6

    Article  Google Scholar 

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Atmos 102(B3):5005–5017

    Article  Google Scholar 

  • Zus F, Dick G, Dousa J, Heise S, Wickert J (2014) The rapid and precise computation of GPS slant total delays andmapping factors utilizing a numerical weather model. Radio Sci 49:207–216. https://doi.org/10.1002/2013rs005280

    Article  Google Scholar 

  • Zus F, Dick G, Douša J, Wickert J (2015) Systematic errors of mapping functions which are based on the VMF1 concept. GPS Solut 19:277–286. https://doi.org/10.1007/s10291-014-0386-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41904041), China Postdoctoral Science Foundation (No. 2019M660192), National Key Research Program (No. 2016YFB0501900) and National Natural Science Foundation of China (42074037). We acknowledge the IGS, CODE, ECMWF, POLENET, TUW, GFZ and UNB for supplying the research datasets. We are indebted to J. Boehm of TUW, F. Zus of GFZ and T. Nikolaidou of UNB for their useful discussions. We would like to thank two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HXZ and YBY designed the research and processed data; YBY supervised the research; WL revised the manuscript and helped with the writing; HXZ, YBY and WL analysed the data; HXZ wrote the paper. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Hongxing Zhang.

Appendix 1

Appendix 1

See Table 4.

Table 4 Grid points of the TUW-VMF1-(FC) models with ZHD bias exceeding 10 mm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yuan, Y. & Li, W. An analysis of multisource tropospheric hydrostatic delays and their implications for GPS/GLONASS PPP-based zenith tropospheric delay and height estimations. J Geod 95, 83 (2021). https://doi.org/10.1007/s00190-021-01535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01535-3

Keywords

Navigation