Skip to main content
Log in

IGS real-time service for global ionospheric total electron content modeling

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Benefiting from global multi-frequency and multi-constellation GNSS measurements provided by the experimental International GNSS real-time service (IGS RTS), a predicting-plus-modeling approach employed by Chinese Academy of Sciences (CAS) for the routine generation of real-time global ionospheric maps (RT-GIM) is first reported. Along with RT-GIMs generated by Universitat Politècnica de Catalunya (UPC), the quality of CAS and UPC RT-GIMs in IONEX format is assessed during a low soar activity period from September 2017 to December 2019. The differential slant total electron contents (dSTEC) derived from 50 GPS stations of the IGS and Jason-3 vertical TECs (VTEC) over the ocean are used as references. In comparison with different reference TECs, CAS and UPC RT-GIMs are approximately 1.7–4.9% and 8.6–12.5% worse than the respective post-processed GIMs CASG and UQRG, respectively. Using RTCM ionospheric data streams from CAS, Centre National d’Etudes Spatiales (CNES) and UPC, the first experimental IGS combined RT-GIM is generated and validated in actual real-time conditions. Compared to Jason-3 VTEC measurements available during the period of common availability, from October 2018 to April 2019, RT-GIM discrepancies present similar relative RMS errors, which are 33, 36, 36 and 38% for CNES, combined one, UPC and CAS, respectively. Aside from a better understanding of the influence of working in the original IONEX versus RTCM ionospheric formats, the update to a new experimental adaptation of RT strategy is highlighted by UPC, and the computation of multi-layer RT-GIM is emphasized by CAS in view of the inadequacy of single-layer ionospheric assumption in the presence of large latitudinal gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

CAS, CNES and UPC RT ionospheric data streams are routinely transmitted via the respective NTRIP caster. CAS RT-GIMs in IONEX format are publicly available from ftp://ftp.gipp.org.cn/product/ionex/.

References

  • Amiri-Simkooei A, Asgari J (2012) Harmonic analysis of total electron contents time series: methodology and results. GPS Solut 16(1):77–88

    Article  Google Scholar 

  • Azpilicueta F, Brunini C (2008) Analysis of the bias between TOPEX and GPS vTEC determinations. J Geod 83(2):121–127

    Article  Google Scholar 

  • Caissy M, Agrotis L, Weber G, Hernández-Pajares M, Hugentobler U (2012) Coming soon—the international GNSS real-time service. GPS World. http://gpsworld.com/gnss-systemaugmentation-assistanceinnovation-coming-soon-13044/

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198

    Article  Google Scholar 

  • Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orús R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 46(6):1–11

    Article  Google Scholar 

  • García-Rigo A, Monte E, Hernández-Pajares M, Juan JM, Sanz J, Aragón-Angel A, Salazar D (2011) Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Sci 46(6):1–3

    Article  Google Scholar 

  • García-Rigo A, Roma D, Hernández-Pajares M (2018) Towards RT assessment of ionospheric monitoring within IAG’s RTIM-WG. In: EGU General Assembly 2018, Apr 8–13, Vienna, Austria

  • Hernández-Pajares M, Roma-Dollase D (2017a) Examples of IGS real-time Ionospheric information benefits: space weather monitoring, precise farming and RT-GIMs. In: IGS workshop 2017, Jul 3–7, Paris, France

  • Hernández-Pajares M, Juan J, Sanz J (1999) New approaches in global ionospheric determination using ground gps data. J Atmos Sol Terr Phys 61(16):1237–1247

    Article  Google Scholar 

  • Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275

    Article  Google Scholar 

  • Hernández-Pajares M, Aragón-Ángel À, Defraigne P, Bergeot N, Prieto-Cerdeira R, García-Rigo A (2014) Distribution and mitigation of higher-order ionospheric effects on precise GNSS processing. J Geophys Res Solid Earth. https://doi.org/10.1002/2013JB010568

    Article  Google Scholar 

  • Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod 91(12):1405–1414

    Article  Google Scholar 

  • Jakowski N, Hoque M, Mayer C (2011a) A new global TEC model for estimating transionospheric radio wave propagation errors. J Geod 85(12):965–974

    Article  Google Scholar 

  • Jakowski N, Mayer C, Hoque MM, Wilken V (2011b) Total electron content models and their use in ionosphere monitoring. Radio Sci. https://doi.org/10.1029/2010RS004620

    Article  Google Scholar 

  • Jee G, Lee HB, Solomon SC (2014) Global ionospheric total electron contents (TECs) during the last two solar minimum periods. J Geophys Res Space Phys 119(3):2090–2100

    Article  Google Scholar 

  • Juan JM, Rius A, Hernandez-Pajares M, Sanz J (1997) A two-layer model of the ionosphere using global positioning system data. Geophys Res Lett 24(4):393–396

    Article  Google Scholar 

  • Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci. https://doi.org/10.1029/2005RS003279

    Article  Google Scholar 

  • Krankowski A, Hernandez-Pajares M, Cherniak I, Roma-Dollase D, Zakharenkova I, Ghoddousi-Fard R, Yuan Y, Li Z, Zhang H, Shi C, Feltens J, Komjathy A, Vergados P, Schaer S, Garcia-Rigo A, Gómez-Cama JM (2017) Ionosphere Working Group Technical Report 2016. In: Villiger A, Dach R (eds) IGS Technical Report 2016. Astronomical Institute University of Bern, pp 155–162

  • Laurichesse D, Blot A (2015) New CNES real time products including BeiDou. IGS Mail No. 7183, 10 Nov 2015

  • Li Z, Yuan Y, Wang N, Hernandez-Pajares M, Huo X (2015) SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J Geod 89(4):331–345

    Article  Google Scholar 

  • Li M, Yuan Y, Wang N, Li Z, Huo X (2018) Performance of various predicted GNSS global ionospheric maps relative to GPS and JASON TEC data. GPS Solut 22(2):55

    Article  Google Scholar 

  • Liu T, Zhang B, Yuan Y, Li M (2018) Real-time precise point positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling. J Geod 92(11):1267–1283

    Article  Google Scholar 

  • Mannucci A, Wilson B, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582

    Article  Google Scholar 

  • Orús R, Hernández-Pajares M, Juan J, Sanz J (2005) Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atmos Sol Terr Phys 67(16):1598–1609

    Article  Google Scholar 

  • Roma-Dollase D, Hernández-Pajares M, Krankowski A, Kotulak K, Ghoddousi-Fard R, Yuan Y, Li Z, Zhang H, Shi C, Wang C (2018a) Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J Geod 92(6):691–706

    Article  Google Scholar 

  • Roma-Dollase D, Hernández-Pajares M, García-Rigo A, Krankowski A (2018b) Looking for optimal ways to combine global ionospheric maps in real-time. In: IGS workshop 2018, Oct 29–Nov 2, Wuhan

  • Roma-Dollase D, Hernández-Pajares M, García-Rigo A, Krankowski A, Fron A, Laurichesse D, Blot A, Orus-Perez R (2018c) Assessment methodology for global ionospheric maps of electron content and potential adaptation to real-time. In: URSI AT-RASC meeting, Oct 29–Jun 1, Gran Canaria

  • RTCM-SC (2014) Proposal of new RTCM SSR messages, SSR Stage 2: Vertical TEC (VTEC) for RTCM Standard 10403.2 Differential GNSS (global navigation satellite system) Services—Version 3. RTCM Special Committee 104

  • RTCM-SC (2016) RTCM Standard 10403.3 Differential GNSS (Global Navigation Satellite System) Services—Version 3. RTCM Special Committee 104, Oct 7 2016

  • Sanz J, Juan JM, Rovira-Garcia A, González-Casado G (2017) GPS differential code biases determination: methodology and analysis. GPS Solut 21(4):1549–1561

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the earths ionosphere using the global positioning system. Ph.D. dissertation, University of Bern, Bern

  • Wang N, Li Z (2018) Benefits of IGS RTS for real time ionospheric space weather monitoring. In: IGS Workshop 2018, Oct 29–Nov 2, Wuhan

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Wang N, Li Z, Montenbruck O, Tang C (2019) Quality assessment of GPS, Galileo and BeiDou-2/3 satellite broadcast group delays. Adv Space Res 64(9):1764–1779

    Article  Google Scholar 

  • Weber G, Mervart L, Lukes Z, Rocken C, Dousa J (2007) Real-time clock and orbit corrections for improved point positioning via NTRIP. In: Proceedings of the ION GNSS 2007. Institute of Navigation, pp 1992–1998

  • Yuan Y, Ou J (2002) Differential areas for differential stations (DADS): a new method of establishing grid ionospheric model. Chin Sci Bull 47(12):1033–1036

    Article  Google Scholar 

  • Yuan Y, Ou J (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014

    Article  Google Scholar 

  • Zhang B (2016) Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci 51(7):972–988

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the IGS and other agencies for providing real-time GNSS data and products. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA17010202), the National Natural Science Foundation of China (41674043, 41704038), the National Key Research Program of China (2017YFGH002206), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

ZL, NW and MH designed the research; ZL and NW performed the research and wrote the paper; ZL, NW, MH analyzed the data; AL, JZ AG and DR also contributed to the data analysis; YY, AK, HY, DL and AB gave helpful discussions on additional analyses and result interpretation.

Corresponding author

Correspondence to Zishen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, N., Hernández-Pajares, M. et al. IGS real-time service for global ionospheric total electron content modeling. J Geod 94, 32 (2020). https://doi.org/10.1007/s00190-020-01360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01360-0

Keywords

Navigation