Skip to main content
Log in

A flexible strategy for handling the datum and initial bias in real-time GNSS satellite clock estimation

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Investigations have been focused on improving the precision of real-time GNSS satellite clock corrections. There is a little literature analyzing the characteristics and impacts of the clock datum and initial clock biases (ICBs). We illustrated the clock anomaly caused by the two factors and proposed a new strategy flexible for global and regional clock estimation based on the mixed-difference observation method. First, we analyzed the clock datum of the final and real-time clocks. Results show that the variation in the clock datum can be up to 500 ns per day depending on the datum definition strategy. The variations can lead to large inconsistencies in the datum for the re-convergence of estimated satellite clocks when using the mixed-difference clock estimation method. To resolve the problem, we propose a new method for the epoch-by-epoch datum definition, which can screen out any outliers in broadcast ephemeris in real time, and particularly suitable for the real-time clock estimation. Second, we analyzed ICB jumps in real-time clock corrections, which can degrade the accuracy of precise point positioning. We propose a short-term prediction of clock corrections for bridging ICBs with the precision better than 0.1 ns for stable satellite clocks within a gap of 1–3 min. The prediction can decrease the magnitude of ICB jumps and thus improve a user solution. Considering the prediction of clocks, high precision cannot be guaranteed for all conditions, we thus recommend broadcasting a discontinuity flag for real-time service, so the re-convergence of ICB can be identified by users for resetting carrier-phase ambiguities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed F, Václavovic P, Teferle FN, Douša J, Bingley R, Laurichesse D (2016) Comparative analysis of real-time precise point positioning zenith total delay estimates. GPS Solut 20:187–199. https://doi.org/10.1007/s10291-014-0427-z

    Article  Google Scholar 

  • Beutler G, Moore A, Mueller I (2009) The international global navigation satellite systems service (IGS): Development and achievements. J. Geodesy 83:297–307. https://doi.org/10.1007/s00190-008-0268-z

    Article  Google Scholar 

  • Bock H, Hugentobler U, Beutler G (2003) Kinematic and dynamic determination of trajectories for low earth satellites using GPS. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin, pp 65–69. https://doi.org/10.1007/978-3-540-38366-6_10

    Chapter  Google Scholar 

  • Calais E, Han JY, DeMets C, Nocquet JM (2006) Deformation of the North American plate interior from a decade of continuous GPS measurements. J Geophys Res Solid Earth. https://doi.org/10.1029/2005jb004253

    Article  Google Scholar 

  • Douša J (2010) The impact of errors in predicted GPS orbits on zenith troposphere delay estimation. GPS Solutions 14:229–239

    Article  Google Scholar 

  • Dousa J, Vaclavovic P (2014) Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv Space Res 53:1347–1358. https://doi.org/10.1016/j.asr.2014.02.021

    Article  Google Scholar 

  • Douša J, Václavovic P, Zhao L, Kačmařík M (2018) New adaptable all-in-one strategy for estimating advanced tropospheric parameters and using real-time orbits and clocks. Remote Sensing 10:232. https://doi.org/10.3390/rs10020232

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83:689. https://doi.org/10.1007/s00190-009-0315-4

    Article  Google Scholar 

  • El-Mowafy A, Deo M, Kubo N (2016) Maintaining real-time precise point positioning during outages of orbit and clock corrections. GPS Solut 21:937–947. https://doi.org/10.1007/s10291-016-0583-4

    Article  Google Scholar 

  • Gao Y, Shen X (2002) A new method for carrier-phase-based precise point positioning. Navigation 49:109–116. https://doi.org/10.1002/j.2161-4296.2002.tb00260.x

    Article  Google Scholar 

  • Ge M, Chen J, Douša J, Gendt G, Wickert J (2012) A computationally efficient approach for estimating high-rate satellite clock corrections in realtime. GPS Solut 16(1):9–17

    Article  Google Scholar 

  • Geng J, Bock Y, Melgar D, Crowell BW, Haase JS (2013) A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: Implications for earthquake early warning. Geochem Geophys Geosyst 14(7):2124–2142

    Article  Google Scholar 

  • Gong X, Gu S, Lou Y, Zheng F, Ge M, Liu J (2018) An efficient solution of real-time data processing for multi-GNSS network. J Geodesy 92(7):797–809

    Article  Google Scholar 

  • Guerova G, Jones J, Douša J, Dick G, de Haan S, Pottiaux E, Bock O, Pacione R, Elgered G, Vedel H, Bender M (2016) Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos Meas Tech 9:5385–5406. https://doi.org/10.5194/amt-9-5385-2016

    Article  Google Scholar 

  • Hadas T, Bosy J (2015) IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut 19:93–105

    Article  Google Scholar 

  • Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut 13:173–182

    Article  Google Scholar 

  • Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solut 4:31–36. https://doi.org/10.1007/pl00012863

    Article  Google Scholar 

  • Laurichesse D, Cerri L, Berthias JP, Mercier F (2013) Real time precise GPS constellation and clocks estimation by means of a Kalman filter. In: Proceedings of ION-GNSS-2013, Institute of Navigation, 16–20 Sept, Nashville, TN, USA, pp 1155–1163

  • Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES–CLS IGS. Analysis Center J Geodesy 86:991–1003

    Article  Google Scholar 

  • Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJG (2015) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geodesy 90:15–44. https://doi.org/10.1007/s00190-015-0854-9

    Article  Google Scholar 

  • Prange L, Dach R, Lutz S, Schaer S, Jäggi A (2015) The CODE MGEX orbit and clock solution. In: IAG 150 Years 2015. Springer, Cham, pp. 767–773. https://doi.org/10.1007/1345_2015_161

    Google Scholar 

  • Shi C, Guo S, Gu S, Yang X, Gong X, Deng Z et al (2019) Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity. J Geodesy 93(4):515–528

    Article  Google Scholar 

  • Takasu T (2009) RTKLIB: open source program package for RTK-GPS, FOSS4G 2009. Tokyo, Japan

    Google Scholar 

  • Uhlemann M, Gendt G, Ramatschi M, Deng Z (2015) GFZ global multi-GNSS network and data processing results. In: IAG 150 Years 2015. Springer, Cham, pp. 673–679.

    Google Scholar 

  • Vaclavovic P, Dousa J, Gyori G (2013) G-Nut software library: state of development and first results. Acta Geodynamica at Geomaterialia 10(4):431–436. https://doi.org/10.13168/agg.2013.0042

    Article  Google Scholar 

  • Weber R, Hugentobler U, Neilan R (2011) IGS M-GEX-The IGS Multi-GNSS global experiment. In: Proceedings of the 3rd international colloquium on scientific and fundamental aspects of the galileo program, 30 Aug–02 Sept, Copenhagen

  • Yang X, Gu S, Gong X, Song W, Lou Y, Liu J (2019) Regional BDS satellite clock estimation with triple-frequency ambiguity resolution based on undifferenced observation. GPS Solutions 23(2):33

    Article  Google Scholar 

  • Ye S, Zhao L, Song J, Chen D, Jiang W (2017) Analysis of estimated satellite clock biases and their effects on precise point positioning. GPS Solutions. https://doi.org/10.1007/s10291-017-0680-z

    Article  Google Scholar 

  • Zhang W, Lou Y, Gu S et al (2016) Joint estimation of GPS/BDS real-time clocks and initial results. GPS Solutions 20(4):665–676

    Article  Google Scholar 

  • Zhao L, Ye S, Chen D (2018) Numerical investigation on the effects of third-frequency observable on the network clock estimation model. Adv Space Res. https://doi.org/10.1016/j.asr.2018.03.004

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102:5005–5017. https://doi.org/10.1029/96jb03860

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Ministry of Education, Youth and Sports of the Czech Republic (Project No. LO1506). The authors further acknowledges IGS for providing GNSS data and products, and CODE, GFZ and CNES for providing orbit and clock products for IGS and MGEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Dousa, J., Ye, S. et al. A flexible strategy for handling the datum and initial bias in real-time GNSS satellite clock estimation. J Geod 94, 3 (2020). https://doi.org/10.1007/s00190-019-01328-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-019-01328-9

Keywords

Navigation