Skip to main content
Log in

A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A new methodology for computing the gravitational effect of a spherical tesseroid has been devised and implemented. The methodology is based on the rotation from the global Earth-Centred Rotational reference frame to the local Earth-Centred P-Rotational reference frame, referred to the computation point P, and it requires knowledge of the height and the angular extension of each topographic column. After rotation, the gravitational effect of the tesseroid is computed via the effect of a sector of the spherical zonal band. In this respect, two possible procedures for handling the rotated tesseroids have been proposed and tested. The results obtained with the devised methodology are in good agreement with those derived by applying other existing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M

  • Asgharzadeh MF, von Frese RRB, Kim HR, Leftwich TE, Kim JW (2007) Spherical prism gravity effects by Gauss–Legendre quadrature integration. Geophys J Int 169:1–11. doi:10.1111/j.1365-246X.2007.03214.x

    Article  Google Scholar 

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geod 86:499–520. doi:10.1007/s00190-011-0533-4

    Article  Google Scholar 

  • Biagi L, Sansò F (2000) TcLight: a new technique for fat RTC computation. In: Sideris (ed) International Association of Geodesy Symposia, vol. 123. Springer, Berlin

  • Claessens SJ, Hirt C (2013) Ellipsoidal topographic potential: new solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. JGR Solid Earth 118:5991–6002. doi:10.1002/2013JB010457

    Article  Google Scholar 

  • Forsberg R (1984) A study of the terrain reductions, density anomalies and geophysical inversion methods in gravity filed modelling. OSU Report No 355, Columbus, Ohio

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geod 87:645–660

    Article  Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geod 81:121–136. doi:10.1007/s00190-006-0094-0

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H. Freeman and CO, San Francisco

    Google Scholar 

  • Hirt C, Kuhn M (2012) Evaluation of high-degree series expansions of the topographic potential to higher-order powers. J Geophys Res 117:B12407

    Google Scholar 

  • Hirt C, Kuhn M (2014) Band-limited topographic mass distribution generates full-spectrum gravity field: gravity forward modeling in the spectral and spatial domains revisited. J Geophys Res Solid Earth 119:3646–3661. doi:10.1002/2013JB010900

    Article  Google Scholar 

  • Kuipers JB (2002) Quaternions and rotation sequences. Princeton University Press, Princeton

    Google Scholar 

  • La Fehr TR (1991) An exact solution for the gravity curvature (Bullard B) correction. Geophysics 56:1179–1184

    Article  Google Scholar 

  • Mac Millan WD (1958) Theoretical mechanics. The theory of the potential, vol 2. Dover, New York

    Google Scholar 

  • Mader K (1951) Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur 3. Ordnung. Österr. Z. f, Vermessungswesen, Sonderheft, p 11

  • Pavlis NK, Rapp RH (1990) The development of an isostatic gravitational model to degree 360 and its use in global gravity modelling. Geophys J Int 100:369–378. doi:10.1111/j.1365-246X.1990.tb00691.x

    Article  Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by space borne radar. Photograms Rem Sens 57:241–262. doi:10.1016/S0924-2716(02)00124-7

    Article  Google Scholar 

  • Roussel C, Verdun J, Cali J, Masson F (2015) Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature. Geophys J Int 203:2220–2236. doi:10.1093/gji/ggv438

    Article  Google Scholar 

  • Rummel R, Rapp RH, Suenkel H, Tschernin CC (1985) Comparison of Global Topographic/Isostatic Models to the Earth’s Observed Gravity Field. OSU Report No 388, Columbus, Ohio

  • Sansò F (2013a) Observables of physical geodesy and their analytical representation. In: Sansò, Sideris (eds) Geoid determination. Springer, Heidelberg

  • Sansò F (2013b) The local modelling of the gravity field: the terrain effect. In: Sansò, Sideris (eds) Geoid determination. Springer, Heidelberg

  • Sideris MG (1985) A fast Fourier transform method of computing terrain corrections. Manuscripta Geodaetica 10(1):66–73

    Google Scholar 

  • Smith DA, Robertson DS, Milbert DG (2001) Gravitational attraction of local crustal masses in spherical coordinates. J Geod 74:783–795. doi:10.1007/s001900000142

    Article  Google Scholar 

  • Torge W, Műller J (2012) Geodesy. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Tscherning CC, Knudsen P, Forsberg R (1994) Description of the GRAVSOFT package. Geophysical Institute, University of Copenhagen, Technical Report

  • Tsoulis D, Wziontek H, Petrović S (2003) A bilinear approximation of the surface relief in terrain correction computation. J Geod 77:338–344. doi:10.1007/s00190-003-0332-7

    Article  Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems, 450 pp

  • Uieda L, Barbosa V, Braitenberg C (2015) Tesseroids: forward-modeling gravitational fields in spherical coordinates. Geophysics. doi:10.1190/geo2015-0204.1

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

Download references

Acknowledgements

A. M. Marotta was supported by SISMA project, ASI Contract No. I/093/06/0. The authors thank K. Seitz, B. Heck and T. Grombein for supplying the numerical solution and C. Hirt and M. Kuhn for supplying the solution based on the spectral method used in Sect. 3. All figures have been made using GMT—The Generic Mapping Tools (Wessel and Smith 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Marotta.

Appendices

Appendix 1

Transformation from the global ECR reference frame to the local ECP reference frame.

Let point O and base \(\vec {e}_i \) define the classical ECR (Earth-Centred Rotational) reference frame, where the origin O is coincident with the Earth’s centre of mass, the Z-axis, aligned with the Earth rotational axis, and the X-axis, extending from O to the intersection of the equator and the prime meridian (Fig. 15, panel a). The Y-axis completes the right-handed equatorial system. Let the same origin O and base \(\vec {n}_i \) define the ECP (Earth-Centred P-Rotational) reference frame, where the z-axis is directed along \(\vec {n}_3 \), parallel to the line connecting the centre of the Earth O and point P, from O outwards, and axes x and y are parallel to the spherical directions evaluated in P, i.e. \(\vec {n}_1 \) and \(\vec {n}_2 \), respectively (Fig. 15, panels a\(_{1}\) and a\(_{2})\).

If \(\lambda _{P} \) and \(\theta _{P} \) indicate the longitude and the colatitude of point P, respectively, in the ECR reference frame, the transformation from ECR to ECP can be performed as

$$\begin{aligned} \begin{array}{l} \vec {n}_1 =\cos \theta _p \cos \lambda _p \vec {e}_1 +\cos \theta _p \sin \lambda _p \vec {e}_2 -\sin \theta _p \vec {e}_3 \\ \vec {n}_2 =-\sin \lambda _p \vec {e}_1 +\cos \lambda _p \vec {e}_2 \\ \vec {n}_3 =\sin \theta _p \cos \lambda _p \vec {e}_1 +\sin \theta _p \sin \lambda _p \vec {e}_2 +\cos \theta _p \vec {e}_3 \\ \end{array} \end{aligned}$$

or

$$\begin{aligned} \vec {n}_i =R_{RP} \vec {e}_j \end{aligned}$$
(4)

with \(R_{RP} =\left[ {{\begin{array}{lll} {\cos \theta \cos \lambda }&{} {\cos \theta \sin \lambda }&{} {-\sin \theta } \\ {-\sin \lambda }&{} {\cos \lambda }&{} 0 \\ {\sin \theta \cos \lambda }&{} {\sin \theta \sin \lambda }&{} {\cos \theta } \\ \end{array} }} \right] _{P} \) evaluated at P.

Conversely, the transformation from ECP to ECR can be performed as

$$\begin{aligned} \begin{array}{l} \vec {e}_1 =\cos \theta _P \cos \lambda _P \vec {n}_1 -\sin \lambda _P \vec {n}_2 +\sin \theta _P \cos \lambda _P \vec {n}_3 \\ \vec {e}_2 =\cos \theta _P \sin \lambda _P \vec {n}_1 +\cos \lambda _P \vec {n}_2 +\sin \theta _P \sin \lambda _P \vec {n}_3 \\ \vec {e}_3 =-\sin \theta _P \vec {n}_1 +\cos \theta _P \vec {n}_3 \\ \end{array} \end{aligned}$$

or

$$\begin{aligned} \vec {e}_i =R_{PR} \vec {n}_j \end{aligned}$$
(5)

with \(R_{PR} =\left[ {{\begin{array}{lll} {\cos \theta \cos \lambda }&{} {-\sin \lambda }&{} {\sin \theta \cos \lambda } \\ {\cos \theta \sin \lambda }&{} {\cos \lambda }&{} {\sin \theta \sin \lambda } \\ {-\sin \theta }&{} 0&{} {\cos \theta } \\ \end{array} }} \right] _P \),

where \(R_{PR} =\left( {R_{RP} } \right) ^{-1}=R^{\mathrm{T}}_{RP} \).

If X, Y and Z are the coordinates of a generic point Q given in the ECR reference frame and x, y and z are the coordinates of the same point given in the ECP reference frame, it follows that

$$\begin{aligned} \left[ {x,y,z} \right] \left[ {\begin{array}{l} \vec {n}_1 \\ \vec {n}_2 \\ \vec {n}_3 \\ \end{array}} \right] =\left[ {X,Y,Z} \right] \left[ {\begin{array}{l} \vec {e}_1 \\ \vec {e}_2 \\ \vec {e}_3 \\ \end{array}} \right] \end{aligned}$$

and, from A\(_{2}\),

$$\begin{aligned} \left[ {x,y,z} \right] \left[ {\begin{array}{l} \vec {n}_1 \\ \vec {n}_2 \\ \vec {n}_3 \\ \end{array}} \right]= & {} \left[ {X,Y,Z} \right] \left( {R_{PR} \left[ {\begin{array}{l} \vec {n}_1 \\ \vec {n}_2 \\ \vec {n}_3 \\ \end{array}} \right] } \right) \\= & {} ( {{\begin{array}{l} \\ {\left[ {X,Y,Z} \right] R_{PR} } \\ \\ \end{array} }} )\left[ {\begin{array}{l} \vec {n}_1 \\ \vec {n}_2 \\ \vec {n}_3 \\ \end{array}} \right] \end{aligned}$$

Finally, neglecting base \(\vec {n}_i \) and transposing both terms, we obtain

$$\begin{aligned}&\left[ {x,y,z} \right] ^{\mathrm{T}}=( {{\begin{array}{l} \\ {\left[ {X,Y,Z} \right] R_{PR} } \\ \\ \end{array} }} )^{\mathrm{T}}\\&\left[ {\begin{array}{l} x \\ y \\ z \\ \end{array}} \right] =R^{\mathrm{T}}_{PR} \left[ {\begin{array}{l} X \\ Y \\ Z \\ \end{array}} \right] \end{aligned}$$

or, explicitly,

$$\begin{aligned} \left[ {\begin{array}{lll} x \\ y \\ z \\ \end{array}} \right]= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {\cos \theta _p \cos \lambda _p }&{} {\cos \theta _p \sin \lambda _p }&{} {-\sin \theta _p } \\ {-\sin \lambda _p }&{} {\cos \lambda _p }&{} 0 \\ {\sin \theta _p \cos \lambda _p }&{} {\sin \theta _p \sin \lambda _p }&{} {\cos \theta _p } \\ \end{array} }} \right] \left[ {\begin{array}{lll} {X} \\ Y \\ Z \\ \end{array}} \right] \\ x= & {} \cos \theta _p \cos \lambda _p X+\cos \theta _p \sin \lambda _p Y-\sin \theta _p Z \\ y= & {} -\sin \lambda _p X+\cos \lambda _p Y \\ z= & {} \sin \theta _p \cos \lambda _p X+\sin \theta _p \sin \lambda _p Y+\cos \theta _p Z \\ \end{aligned}$$

The longitude and the colatitude of point Q in the ECP reference frame, \(\lambda {'}\) and \(\theta {'}\), respectively, can finally be determined as

$$\begin{aligned} \begin{array}{l} \lambda '=\hbox {arctg}\left( {\frac{y}{x}} \right) \\ \theta '=\hbox {arctg}\sqrt{\frac{x^{2}+y^{2}}{z^{2}}} \\ \end{array} \end{aligned}$$

or

$$\begin{aligned} \lambda '= & {} \hbox {arctg}\left( {\frac{-\sin \lambda _p \cdot X+\cos \lambda _p \cdot Y}{\cos \theta _p \cos \lambda _p \cdot X+\cos \theta _p \sin \lambda _p \cdot Y-\sin \theta _p \cdot Z}} \right) \\ \theta '= & {} arctg\sqrt{\frac{\left( {\cos \theta _p \cos \lambda _p \cdot X+\cos \theta _p \sin \lambda _p \cdot Y-\sin \theta _p \cdot Z} \right) ^{2}+\left( {-\sin \lambda _p \cdot X+\cos \lambda _p \cdot Y} \right) ^{2}}{\left( {\sin \theta _p \cos \lambda _p \cdot X+\sin \theta _p \sin \lambda _p \cdot Y+\cos \theta _p \cdot Z} \right) ^{2}}} \end{aligned}$$

If \(\lambda \) and \(\theta \) are the longitude and colatitude of point Q, respectively, given in the ECR reference frame, then

Panel (a\(_{2})\) of Fig. 15 shows the definitions of \(\lambda {'}\) and \(\theta {'}\).

Appendix 2

$$\begin{aligned} \Delta g_{_{P}} =G\rho \Delta \lambda {'}\mathop {\int }\limits _R^{R+h} {\mathop {\int }\limits _{\theta _1^{'} }^{\theta _2^{'} } {\frac{r{'}^{2}\sin \theta {'} \cos \alpha }{\ell ^{2}}\mathrm{d}\theta {'} \mathrm{d}r{'}} } \end{aligned}$$

To carry out the integration over \(r{'}\) and \(\theta {'} \), we follow the procedure used by Turcotte and Schubert (1982) to calculate the gravitational acceleration due to the whole spherical Earth. Thus, for the law of planar cosines,

$$\begin{aligned} \cos \alpha= & {} \left( {\frac{r^{2}+\ell ^{2}-r{'}^{2}}{2r\ell }} \right) \\ \ell ^{2}= & {} r^{2}+r{'}^{2}-2rr{'}\cos \theta {'} \end{aligned}$$

and by differentiating the second expression with r and \(r{'}\) held constant,

$$\begin{aligned} \sin \theta {'}\mathrm{d}\theta {'}=\frac{\ell }{rr{'}}\hbox {d}\ell . \end{aligned}$$

The integral gives

$$\begin{aligned} \Delta g_{P}= & {} G\rho \Delta \lambda {'}\mathop {\int }\limits _R^{R+h} {\mathrm{d}r{'}\mathop {\int }\limits _{\ell _1 }^{\ell _2 } {\frac{r{'}^{2} \frac{r^{2}+\ell ^{2}-r{'}^{2}}{2r\ell } }{\ell ^{2}}\frac{\ell }{rr{'}}\mathrm{d}\ell } } \\= & {} \frac{1}{2}\frac{G\rho }{r^{2}}\Delta \lambda {'}\mathop {\int }\limits _R^{R+h} {r{'} \mathrm{d}r{'}\mathop {\int }\limits _{\ell _1 }^{\ell _2 } {\left( {\frac{r^{2}-r{'}^{2}}{\ell ^{2}}+1} \right) \mathrm{d}\ell } } \end{aligned}$$

where \(\left\{ {\begin{array}{l} \ell _1 =\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 } \\ \ell _2 =\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 } \\ \end{array}} \right. \)

The integration over \(\ell \) gives

$$\begin{aligned} \Delta g_{_{P}} =\frac{1}{2}\frac{G\rho }{r^{2}}\Delta \lambda {'}\mathop {\int }\limits _R^{R+h} {r{'} \left[ {\ell -\frac{r^{2}-r{'}^{2}}{\ell }} \right] _{\ell _1 }^{\ell _2 } } \mathrm{d}r{'} \end{aligned}$$

or

$$\begin{aligned} \Delta g_{_{P}}= & {} \frac{1}{2}\frac{G\rho }{r^{2}}\Delta \lambda {'}\mathop {\int }\limits _R^{R+h} {r{'} \left[ \sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }-\frac{r^{2}-r{'}^{2}}{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }}\right. }\\&{\left. -\,\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }+\frac{r^{2}-r{'}^{2}}{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }} \right] \mathrm{d}r{'}}\\ \Delta g_{_P}= & {} \frac{1}{2}\frac{G\rho }{r^{2}}\Delta \lambda {'}\mathop {\int }\limits _R^{R+h} r{'} \left[ \frac{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 -r^{2}+r{'}^{2}}{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }}\right. \\&\left. -\frac{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 +r^{2}-r{'}^{2}}{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }} \right] \mathrm{d}r{'} \\= & {} \frac{1}{2}\frac{G\rho }{r^{2}}\Delta \lambda {'}\mathop {\int }\limits _R^{R+h} {r{'} \left[ {\frac{2r{'}^{2}-2rr{'}\cos \theta {'}_2 }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }}+\frac{-2r{'}^{2}+2rr{'}\cos \theta {'}_1 }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }}} \right] \mathrm{d}r{'}} \\= & {} \frac{1}{2}\frac{G\rho }{r^{2}}\Delta \lambda {'}\mathop {\int }\limits _R^{R+h} {r{'} \left[ {\frac{2r{'}\left( {r{'}-r\cos \theta {'}_2 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }}+\frac{-2r{'}\left( {r{'}-r\cos \theta {'}_1 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }}} \right] \mathrm{d}r{'}} \\= & {} \frac{G\rho }{r^{2}}\Delta \lambda {'}\mathop {\int }\limits _R^{R+h} { \left[ {\frac{r{'}^{ 2}\left( {r{'}-r\cos \theta {'}_2 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }}-\frac{r{'}^{ 2}\left( {r{'}-r\cos \theta {'}_1 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }}} \right] \mathrm{d}r{'}} \end{aligned}$$

Let \(I_{r{'}} \) be the indefinite integral, defined as

$$\begin{aligned} I_{r{'}} ={\int }\left[ {\frac{r{'}^{ 2}\left( {r{'}-r\cos \theta {'}_2 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }}-\frac{r{'}^{ 2}\left( {r{'}-r\cos \theta {'}_1 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }}} \right] \mathrm{d}r{'} \end{aligned}$$

The integration over \(r{'}\) gives the following partial integrals

$$\begin{aligned}&{\int }{ \left[ {\frac{r{'}^{ 2}\left( {r{'}-r\cos \theta {'}_1 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_1 }}} \right] \mathrm{d}r{'}} \\&\quad =\frac{1}{3}\left[ {r{'}^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_1 -2} \right) +r r{'}\cos \theta {'}_1 } \right] \\&\qquad \times \,\sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_1 } + \cos \theta {'}_1 \left( {\cos ^{2}\theta {'}_1 -1} \right) r^{3}\\&\qquad \times \,\ln \left[ {2\left( {\sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_1 }+r{'}-r\cos \theta {'}_1 } \right) } \right] \\&{\int }{ \left[ {\frac{r{'}^{ 2}\left( {r{'}-r\cos \theta {'}_2 } \right) }{\sqrt{r^{2}+r{'}^{2}-2rr{'}\cos \theta {'}_2 }}} \right] \mathrm{d}r{'}}\\&\quad =\frac{1}{3}\left[ {r{'}^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_2 -2} \right) +r r{'}\cos \theta {'}_2 } \right] \\&\qquad \times \,\sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_2 } +\cos \theta {'}_2 \left( {\cos ^{2}\theta {'}_2 -1} \right) r^{3}\\&\qquad \times \,\ln \left[ {2\left( {\sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_2 }+r{'}-r\cos \theta {'}_2 } \right) } \right] \end{aligned}$$

and, after summing,

$$\begin{aligned} I_{r{'}}= & {} +\frac{1}{3}\left[ {r{'}^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_2 -2} \right) +r r{'}\cos \theta {'}_2 } \right] \\&\times \sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_2 } -\cos \theta {'}_2 \sin ^{2}\theta {'}_2 r^{3}\\&\times \, \ln \left[ {2\left( {\sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_2 }+r{'}-r\cos \theta {'}_2 } \right) } \right] \\&-\,\frac{1}{3}\left[ {r{'}^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_1 -2} \right) +r r{'}\cos \theta {'}_1 } \right] \\&\times \,\sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_1 } +\cos \theta {'}_1 \sin ^{2}\theta {'}_1 r^{3}\\&\times \,\ln \left[ {2\left( {\sqrt{r{'}^{ 2}+r^{ 2}-2r r{'}\cos \theta {'}_1 }+r{'}-r\cos \theta {'}_1 } \right) } \right] \end{aligned}$$

Once \(I_{r{'}} \) is evaluated at the integration limits, the following result is found

$$\begin{aligned} \Delta g_{P} =\frac{G\rho }{r^{2}}\Delta \lambda {'}I \end{aligned}$$

with

$$\begin{aligned} I= & {} +\frac{1}{3}\left[ {\left( {R+h} \right) ^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_2 -2} \right) +r \left( {R+h} \right) \cos \theta {'}_2 } \right] \\&\times \,\sqrt{\left( {R+h} \right) ^{ 2}+r^{ 2}-2r \left( {R+h} \right) \cos \theta {'}_2 }\\&-\,\frac{1}{3}\left[ {R^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_2 -2} \right) +r\, R\cos \theta {'}_2 } \right] \sqrt{R^{ 2}+r^{ 2}-2 r R\cos \theta {'}_2 } \\&-\,\frac{1}{3}\left[ {\left( {R+h} \right) ^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_1 -2} \right) +r\left( {R+h} \right) \cos \theta {'}_1 } \right] \\&\times \,\sqrt{\left( {R+h} \right) ^{ 2}+r^{ 2}-2r \left( {R+h} \right) \cos \theta {'}_1 }+\frac{1}{3}\left[ R^{ 2}+r^{ 2}\left( {3\cos ^{2}\theta {'}_1 -2} \right) \right. \\&\left. +\,r\, R\cos \theta {'}_1 \right] \sqrt{R^{ 2}+r^{ 2}-2 r R\cos \theta {'}_1 } -\cos \theta {'}_2 \sin ^{2}\theta {'}_2 r^{3}\\&\times \, \ln \left[ {\frac{2\left( {\sqrt{\left( {R+h} \right) ^{ 2}+r^{ 2}-2r \left( {R+h} \right) \cos \theta {'}_2 }+\left( {R+h} \right) -r\cos \theta {'}_2 } \right) }{2\left( {\sqrt{R^{ 2}+r^{ 2}-2 r R\cos \theta {'}_2 }+R-r\cos \theta {'}_2 } \right) }} \right] \\&+\,\cos \theta {'}_1 \sin ^{2}\theta {'}_1 r^{3}\\&\times \, \ln \left[ {\frac{2\left( {\sqrt{\left( {R+h} \right) ^{ 2}+r^{ 2}-2r \left( {R+h} \right) \cos \theta {'}_1 }+\left( {R+h} \right) -r\cos \theta {'}_1 } \right) }{2\left( {\sqrt{R^{ 2}+r^{ 2}-2 r R\cos \theta {'}_1 }+R-r\cos \theta {'}_1 } \right) }} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marotta, A.M., Barzaghi, R. A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J Geod 91, 1207–1224 (2017). https://doi.org/10.1007/s00190-017-1018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-017-1018-x

Keywords

Navigation