Skip to main content
Log in

A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

In GPS meteorology, the weighted mean temperature is usually obtained by using a linear function of the surface temperature T s. However, not every GPS station can measure the surface temperature. The current study explores the characteristics of surface temperature and weighted mean temperature based on the global pressure and temperature model (GPT) and the Bevis T mT s relationship (T ma + bT s). A new global weighted mean temperature (GWMT) model has been built which directly uses three-dimensional coordinates and day of the year to calculate the weighted mean temperature. The data of year 2005–2009 from 135 radiosonde stations provided by the Integrated Global Radiosonde Archive were used to calculate the model coefficients, which have been validated through examples. The result shows that the GWMT model is generally better than the existing liner models in most areas according to the statistic indexes (namely, mean absolute error and root mean square). Then we calculated precipitable water vapor, and the result shows that GWMT model can also yield high precision PWV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GPS:

Global positioning system

GPT:

Global pressure and temperature

GWMT:

Global weighted mean temperature

GNSS:

Global navigation satellite system

ECMWF:

European Centre for Medium-Range

ECMWF:

Weather Forecasts

NCEP/NCAR:

National Centers for Environmental Prediction/National Center for Atmospheric Research

IGRA:

Integrated Global Radiosonde Archive

IGS:

International GNSS service

MAE:

Mean absolute error

PWV:

Precipitable water vapor

RMS:

Root mean square

ZWD:

Zenith wet delay

References

  • Askne J, Nordius H (1987) Estimation of tropospheric delay for mircowaves from surface weather data. Radio Sci 22(3): 379–386

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S et al (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33: 379–386

    Article  Google Scholar 

  • Bevis M, Businger S, Herring AT et al (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97(D14): 15787–15801

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S (1995) Earth-based GPS meteorology: an overview, American Geophysical Union 1995 fall meeting, EOS, Transactions, American Geophysical Union, vol 76, No. 46 (supplement)

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10): 679–683

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20: 1593–1607

    Article  Google Scholar 

  • Ding JC (2009) GPS meteorology and its applications. China Meteorological Press, Beijing, pp 1–10

    Google Scholar 

  • Duan J, Bevis M, Fang P et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35(6): 830–838

    Article  Google Scholar 

  • Gu XP (2004) Research on retrieval of GPS water vapor and method of rainfall forecast. Doctorial dissertation, China Agricultural University, pp 1–15

  • Gu XP, Wang CY, Wu DX (2005) Research on the local algorithm for weighted atmospheric temperature used in GPS remote sensing water vapor. Sci Meterol Sin 25(1): 79–83

    Google Scholar 

  • Hogg DC, Guiraud FO, Decker MT (1981) Measurement of excess transmission length on earth-space paths. Astron Astrophys 95: 304–307

    Google Scholar 

  • Li ZH, Zhang XH (2009) New techniques and precise data processing methods of satellite navigation and positioning. Wuhan University Press, Wuhan

    Google Scholar 

  • Li JG, Mao JT, Li CC (1999) The approach to remote sensing of water vapor based on GPS and linear regression T m in eastern region of China. Acta Meteorol Sin 57(3): 283–292

    Google Scholar 

  • Li GP, Huang GF, Liu BQ (2006) Experiment on driving precipitable water vapor form ground-based GPS network in Chengdu Plain. Geom Inform Sci Wuhan Univ 31(12): 1086–1089

    Google Scholar 

  • Liu YX, Chen YQ, Liu JN (2000) Determination of weighted mean tropospheric temperature using ground meteorological measurement. J Wuhan Tech Univ Survey Map 25(5): 400–403

    Google Scholar 

  • Lv YP, Yin HT, Huang DF (2008) Modeling of weighted mean atmospheric temperature and application in GPS/PWV of Chengdu region. Sci Survey Map 33(4): 103–105

    Google Scholar 

  • Mao JT (2006) Research of remote sensing of atmospheric water vapor using Global Positioning System (GPS). Doctorial dissertation, Beijing University, pp 1–5

  • Rocken C, Ware R, Van Hove T, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapor with the global positioning system. Geophys Res Lett 20(23): 2631–2634. doi:10.1029/93GL02935

    Article  Google Scholar 

  • Ross RJ, Rosenfeld S (1997) Estimating mean weighted temperature of the atmosphere for Global Positioning System. J Geophys Res 102(18): 21719–21730

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. Geophys Monogr Ser 15: 247–251

    Article  Google Scholar 

  • Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in Global Positioning System geodetic measurements. J Geod 64(2): 127–159

    Google Scholar 

  • Wang et al (2005) Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J Geophys Res 110: D21101. doi:10.1029/2005JD006215

    Article  Google Scholar 

  • Wang Y, Liu LT, Hao XG et al (2007) The application study of the GPS Meteorology Network in Wuhan region. Acta Geod Cartogr Sin 36(2): 141–145

    Google Scholar 

  • Wang XY, Dai ZQ, Cao YC et al (2011) Weighted mean temperature T m statistical analysis in ground-based GPS in China. Geomat Inform Sci Wuhan Univ 36(4): 412–416

    Google Scholar 

  • Yuan LL, Anthes RA, Ware RH, Rocken C, Bonner WD, Bevis MG, Businger S (1993) Sensing climate change using the global positioning system. J Geophys Res 98(D8): 14925–14937. doi:10.1029/93JD00948

    Article  Google Scholar 

  • Zhang HP, Liu JN, Zhu WY (2005) Remote sensing of PWV using ground-based GPS data in Wuhan region. Progr Astron 23(2): 170–179

    Google Scholar 

  • Zhang SC (2009) Research and application of remote sensing water vapor using ground_based GPS/Met. Doctorial dissertation, Wuhan University, pp 1–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiBin Yao.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Zhu, S. & Yue, S. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J Geod 86, 1125–1135 (2012). https://doi.org/10.1007/s00190-012-0568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0568-1

Keywords

Navigation