Skip to main content
Log in

Reducing errors in the GRACE gravity solutions using regularization

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth’s monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003–Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4 solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bettadpur S (2007) Level-2 gravity field product user handbook. GRACE 327-734. ftp://podaac.jpl.nasa.gov/pub/grace/doc/L2-UserHandbook_v2.3.pdf

  • Biancale R, Lemoine J, Bruinsma S, Gratton S, Bourgogne S (2008) An improved 10-day time series of the geoid from GRACE and LAGEOS data. GRACE Science Team meeting 2008. ftp://ftp.csr.utexas.edu/pub/grace/Proceedings/Presentations_GSTM2008.pdf

  • Bruinsma S, Lemoine J, Biancale R, Vales N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45(4):587–601. ISSN 0273-1177. doi:10.1016/j.asr.2009.10.012

  • Calvetti D, Hansen PC, Reichel L (2002) L-curve curvature bounds via Lanczos bidiagonalization. Electron Trans Numer Anal 14: 134–149. doi:10.1.1.15.6145

    Google Scholar 

  • Calvetti D, Reichel L, Shuibi A (2004) L-curve and curvature bounds for Tikhonov regularization. Numer Algorithms 35(2): 301–314. doi:10.1.1.15.4684

    Article  Google Scholar 

  • Chen JL, Wilson CR, Seo KW (2009) S 2 tide aliasing in GRACE time-variable gravity solutions. J Geod 83: 679–687. doi:10.1007/s00190-008-0282-1

    Article  Google Scholar 

  • Ditmar P, Kusche J, Klees R (2003) Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues. J Geod 77: 465–477. doi:10.1007/s00190-003-0349-1

    Article  Google Scholar 

  • Dunn C, Bertiger W, Bar-Saver Y, Desai S, Haines B, Kuang D et al (2003) Instrument of GRACE: GPS augments gravity measurements. GPS World 14(2): 16–28

    Google Scholar 

  • Fukumori I, Raghunath R, Fu L (1998) Nature of global large-scale sea level variability in relation to atmospheric forcing: a modeling study. J Geophys Res 103: 5493–5512. doi:10.1029/97JC02907

    Article  Google Scholar 

  • Gunter BC (2000) Parallel least squares analysis of simulated GRACE data. Master’s thesis, The University of Texas at Austin

  • Gunter BC (2004) Computational methods and processing strategies for estimating Earth’s gravity field. Dissertation, The University of Texas at Austin

  • Hansen PC (1998) Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia

    Book  Google Scholar 

  • Kim JR (2000) Simulation Study of a low-low satellite-to-satellite tracking mission. Dissertation, The University of Texas at Austin

  • Koch KR, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76: 259–268. doi:10.1007/s00190-002-0245-x

    Article  Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geod 80(11): 733–749. doi:10.1007/s00190-007-0143-3

    Article  Google Scholar 

  • Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76(6): 359–368. doi:10.1007/s00190-002-0257-6

    Article  Google Scholar 

  • Kusche J, Schmidt R, Petrovic S, Reitbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ and their validation using a hydrological model. J Geod 83(10): 903–913. doi:10.1007/s00190-009-0308-3

    Article  Google Scholar 

  • Lawson C, Hanson R (1974) Solving least squares problems. Prentice-Hall series in automatic computation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lemoine J, Bruinsma S, Loyer S, Biancale R, Marty J, Perosanz F, Balmino G (2007) Temporal gravity field models inferred from GRACE data. Adv Space Res 39(10):1620–1629. ISSN 0273-1177. doi:10.1016/j.asr.2007.03.062

  • Mayer-Guerr T (2007) ITG-Grace03s: the latest GRACE gravity field solution computed in Bonn. Presentation at GSTM+SPP, 15–17 Oct 2007, Potsdam. http://www.massentransporte.de/fileadmin/20071015-17-Potsdam/mo_1050_06_mayer.pdf

  • National Research Council: (1997) Satellite gravity and the geosphere: contributions to the study of the solid Earth and its fluid envelopes. The National Academies Press, Washington

    Google Scholar 

  • Ray RD, Luthcke SB (2006) Tide model errors and GRACE gravimetry: towards a more realistic assessment. Geophys J Int 167(3): 1055–1059. doi:10.1111/j.1365-246X.2006.03229.x

    Article  Google Scholar 

  • Rim HJ (1992) TOPEX’ orbit determination using GPS tracking system. Dissertation, The University of Texas at Austin

  • Rodell M, Houser PR (2004) Updating a land surface model with MODIS derived snow cover. J Hydromet 5(6): 1064–1075

    Article  Google Scholar 

  • Save H (2009) Using regularization for error reduction in GRACE gravity estimation. Dissertation, The University of Texas at Austin

  • Save H, Bettadpur S, Tapley BD (2008a) The use of regularization for global GRACE solutions. GRACE Science Team meeting 2008. ftp://ftp.csr.utexas.edu/pub/grace/Proceedings/Presentations_GSTM2008.pdf

  • Save H, Bettadpur S, Tapley BD (2008b) Improvements in GRACE gravity fields using regularization. AGU Fall meeting 2008

  • Save H, Bettadpur S, Nagel P (2010) Use of background de-aliasing models and error correlations to improve the regularized gravity solutions from GRACE. AGU Fall meeting 2010

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

  • Tapley BD, Bettadpur S, Ries J, Thompson P, Watkins M (2004a) GRACE measurements of mass variability in the Earth system. Science 305:305–503. doi:10.1126/science.1099192

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004b) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

  • Tapley BD, Schutz BE, Born GH (2004c) Statistical orbit determination. Academic Press, New York

    Google Scholar 

  • Thomas JB (1999) An analysis of gravity-field estimation based on inter-satellite dual one-way biased ranging. JPL Publication, pp 98–115

  • Touboul P, Foulon B, Rodrigues M, Marque J P (2004) In orbit Nano-G measurements, lessons for future space missions. Aerosp Sci Technol 8: 431–441. doi:10.1016/j.ast.2004.01.006

    Article  Google Scholar 

  • Total Runoff Integrating Pathways (TRIP). http://hydro.iis.u-tokyo.ac.jp/~taikan/TRIPDATA/TRIPDATA.html

  • Wagner C, McAdoo D, Klokocnk J, Kostelecký J (2006) Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geod 80(2): 94–103. doi:10.1007/s00190-006-0036-x

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103: 30205–30229. doi:10.1029/98JB02844

    Article  Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: First results. Geophys Res Lett 31: L11501. doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wahr J, Swenson S, Velicogna I (2007) Some hydrological and cryospheric applications of GRACE. Joint International GSTM and DFG SPP Symposium. http://www.massentransporte.de/fileadmin/20071015-17-Potsdam/di_0830_07_wahr.pdf

  • Xu P (1992) The value of minimum norm estimation of geopotential fields. Geophys J Int 111: 170–178. doi:10.1111/j.1365-246X.1992.tb00563.x

    Article  Google Scholar 

  • Xu P (1998) Truncated SVD methods for discrete linear ill-posed problems. Geophys J Int 135: 505–514. doi:10.1046/j.1365-246X.1998.00652.x

    Article  Google Scholar 

  • Xu P (2006) Multiple parameter regularization: numerical solutions and applications to the determination of geopotential from precise satellite orbits. J Geod 80: 17–27. doi:10.1007/s00190-006-0025-0

    Article  Google Scholar 

  • Xu P, Rummel R (1994) Generalized ridge regression with application in determination of potential fields. Manuscr Geod 20: 8–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Save.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Save, H., Bettadpur, S. & Tapley, B.D. Reducing errors in the GRACE gravity solutions using regularization. J Geod 86, 695–711 (2012). https://doi.org/10.1007/s00190-012-0548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0548-5

Keywords

Navigation