Skip to main content
Log in

Multiple Parameter Regularization: Numerical Solutions and Applications to the Determination of Geopotential from Precise Satellite Orbits

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Kaula’s rule of thumb has been used in producing geopotential models from space geodetic measurements, including the most recent models from satellite gravity missions CHAMP. Although Xu and Rummel (Manuscr Geod 20 8–20, 1994b) suggested an alternative regularization method by introducing a number of regularization parameters, no numerical tests have ever been conducted. We have compared four methods of regularization for the determination of geopotential from precise orbits of COSMIC satellites through simulations, which include Kaula’s rule of thumb, one parameter regularization and its iterative version, and multiple parameter regularization. The simulation results show that the four methods can indeed produce good gravitational models from the precise orbits of centimetre level. The three regularization methods perform much better than Kaula’s rule of thumb by a factor of 6.4 on average beyond spherical harmonic degree 5 and by a factor of 10.2 for the spherical harmonic degrees from 8 to 14 in terms of degree variations of root mean squared errors. The maximum componentwise improvement in the root mean squared error can be up to a factor of 60. The simplest version of regularization by multiplying a positive scalar with a unit matrix is sufficient to better determine the geopotential model. Although multiple parameter regularization is theoretically attractive and can indeed eliminate unnecessary regularization for some of the harmonic coefficients, we found that it only improved its one parameter version marginally in this COSMIC example in terms of the mean squared error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry D (1986) Nonparametric Bayesian regression. Ann Statist 14:934–953

    Article  MATH  MathSciNet  Google Scholar 

  • Bouman J (1998) Quality of regularization methods. DEOS Report No.98.2, Delft University Press, Delft

    Google Scholar 

  • Bouman J (2000) Quality assessment of satellite-based global gravity field models. PhD Dissertation, Delft University of Technology, Delft

    Google Scholar 

  • Chao BF, Palvis EC, Hwang C, Liu C-C, Shum CK, Tseng C-L, Yang M (2000) COSMIC: geodetic applications in improving Earth’s gravity model. Terrest Atmos Ocean Sci 11:365–378

    Google Scholar 

  • Cook AH (1963) The contribution of observations of satellites to the determination of the Earth’s gravitational potential. Space Sci Rev 2:355–437

    Article  ADS  Google Scholar 

  • Ditmar P, Kusche J, Klees R (2003) Computation of spherical harmonic coefficients from gravity gradiometry data to be acquired by the GOCE satellite: regularization issues. J Geod 77:465–477

    Article  MATH  ADS  Google Scholar 

  • Douglas BC, Goad CC, Morrison FF (1980) Determination of the geopotential from satellite-to-satellite tracking data. J Geophys Res B85:5471–5480

    Article  ADS  Google Scholar 

  • Fletcher R (2000) Practical methods of optimization. 2nd edn. Wiley, Chichester

    Google Scholar 

  • Garcia RV, Jekeli C (2002). On the inversion of GRACE observables for local geoid determination. In: Ádám J, Schwarz K-P (eds). Vistas for geodesy in the new millenium. Springer, Berlin Heidelberg New York, pp 156–161

    Google Scholar 

  • Gruber M (1998) Improving efficiency by shrinkage. Marcel Dekker, New York

    MATH  Google Scholar 

  • Guier WH (1963) Determination of the non-zonal harmonics of the geopotential from satellite Doppler data. Nature 200:124–125

    Article  MATH  ADS  Google Scholar 

  • Hansen PC (1990) Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J Sci Comput 11:503–518

    Article  MATH  Google Scholar 

  • Hemmerle W (1975) An explicit solution for generalized ridge regression. Technometrics 17:309–314

    Article  MATH  MathSciNet  Google Scholar 

  • Hemmerle W, Brantle TF (1978) Explicit and constrained generalized ridge estimation. Technometrics 20:109–120

    Article  MATH  Google Scholar 

  • Hoerl AE, Kennard RW (1970a) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67

    Article  MATH  Google Scholar 

  • Hoerl AE, Kennard RW (1970b) Ridge regression: applications to nonorthogonal problems. Technometrics 12:69–82

    Article  MATH  Google Scholar 

  • Hwang C (2001) Gravity recovery using COSMIC GPS data: application of orbital perturbation theory. J Geod 75:117–136

    Article  ADS  Google Scholar 

  • Ilk K (1985) On the regional mapping of gravitation with two satellites. In: Proceedings of the 1st Hotine-Marussi symposium on mathematical geodesy, pp 807–831

  • Izsak IG (1963) Tesseral harmonics in the geopotential. Nature 199:137–139

    Article  ADS  Google Scholar 

  • Izsak IG (1964) Tesseral harmonics of the geopotential and corrections to station coordinates. J Geophys Res B69:2621–2630

    Article  ADS  Google Scholar 

  • Jekeli C (1999) The determination of gravitational potential differences from satellite-to-satellite tracking. Celes Mech Dynam Astron 75:85–101

    Article  MATH  ADS  Google Scholar 

  • Jekeli C, Upadhyay TN (1990) Gravity estimation from STAGE, a satellite-to-satellite tracking mission. J Geophys Res B95:10973–10985

    Article  ADS  Google Scholar 

  • Kaula WM (1961) A geoid and world geodetic system based on a combination of gravimetric, astrogeodetic and satellite data. J Geophys Res B66:1799–1811

    Article  ADS  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell, London

    Google Scholar 

  • King-Hele DG (1958) The effect of the earth’s oblateness on the orbit of a near satellite. Proc R Soc Lond A247:49–72

    MathSciNet  ADS  Google Scholar 

  • Koch K-R, Kusche J (2002) Regularization of geopotential determination from satellite data by variance components. J Geod 76:259–268

    Article  MATH  ADS  Google Scholar 

  • Koop R (1993) Global gravity field modelling using satellite gravity gradiometry. Netherlands Geodetic Commission, Publication Geodesy (New Series), No. 38, Delft

  • Kozai Y (1966) The Earth gravitational potential derived from satellite motion. Space Sci Rev 5:818–879

    Article  ADS  Google Scholar 

  • Kusche J (2002) Inverse Probleme bei der Gravitationsfeldbestimmung mittels SST- und SGG-Satellitenmissiones, Deutsche Geodätische Kommission, Nr.548, München

  • Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76:359–368

    Article  ADS  Google Scholar 

  • Marsh JG, Lerch FJ, Putney BH, Christodoulidis DC, Smith DE, Felsentreger TL, Sanches BV, Klosko SM, Pavlis EC, Martin TV, Robbins JW, Williamson RG, Colombo OL, Rowlands DD, Eddy W, Chandler NL, Rachlin KE, Patel GB, Bhati S, Chinn D (1988) A new gravitational model for the Earth from satellite tracking data: GEM-T1. J Geophys Res B93:6169–6215

    Article  ADS  Google Scholar 

  • Marsh JG, Lerch FJ, Putney BH, Felsentreger TL, Sanches B, Klosko SM, Patel GB, Robbins JW, Williamson RG, Engelis TL, Eddy W, Chandler NL, Chinn DS, Kapoor S, Rachlin KE, Braatz L, Pavlis EC (1990) The GEM-T2 gravitational model. J Geophys Res B95:22043–22071

    Article  ADS  Google Scholar 

  • Merson RH, King-Hele DG (1958) Use of artificial satellites to explore the Earth’s gravitational field: results from SPUTNIK 2 (1957β). Nature 182:640–641

    Article  ADS  Google Scholar 

  • Montenbruck O, Gill E (2001) Satellite orbits – models, methods, applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe

    Google Scholar 

  • Morozov V (1984) Methods for solving incorrectly posed problems. Springer, Berlin Heidelberg, New York

    Google Scholar 

  • Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–97

    MATH  MathSciNet  Google Scholar 

  • Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer K-H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2003) Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. Space Sci Rev 108:55–66

    Article  ADS  Google Scholar 

  • Rowlands DD, Ray RD, Chinn DS, Lemoine FG (2002) Short-arc analysis of intersatellite tracking data in a gravity mapping mission. J Geod 76:307–316

    Article  ADS  Google Scholar 

  • Rummel R (1985). From the observational model to gravity parameter estimation. In: Schwarz KP (eds). Local gravity field approximation. The University of Calgary, Calgary, pp. 67–106

    Google Scholar 

  • Rummel R, van Gelderen M (1995) Meissl scheme – spectral characteristics of physical geodesy. Manus Geod 20:379–385

    Google Scholar 

  • Rummel R, Schwarz KP, Gerstl M (1979) Least squares collocation and regularization. Bull Geod 53:343–361

    Article  Google Scholar 

  • Rust BW, Burrus WR (1972) Mathematical programming and the numerical solution of linear equations. Elsevier, New York

    MATH  Google Scholar 

  • Seeber G (2003) Satellite geodesy, 2nd edn. Walter de Gruyter, Berlin

    Google Scholar 

  • Tarantola A (1987) Inverse problem theory. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Tikhonov AN (1963) Regularization of incorrectly posed problems. Sov Math 4:1624–1627

    MATH  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed Problems. Wiley, New York

    MATH  Google Scholar 

  • Vinod H, Ullah A (1981) Recent advances in regression methods. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  • Visser PNAM (2005) Low-low satellite-to-satellite tracking: a comparison between analytical linear orbit perturbation theory and numerical integration. J Geod 79:160–166

    Article  ADS  Google Scholar 

  • Visser PNAM, van den Ijssel J, Koop R, Klees R (2001) Exploring gravity field determination from orbit perturbations of the European Gravity Mission GOCE. J Geod 75:89–98

    Article  ADS  Google Scholar 

  • Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field determination from satellite orbit coordinates. J Geod 77:207–216

    Article  MATH  ADS  Google Scholar 

  • Wagner CA (1983) Direct determination of gravitational harmonics from low-low GRAVSAT data. J Geophys Res B88:10309–10321

    Article  ADS  Google Scholar 

  • Wolff M (1969) Direct measurements of the Earth’s gravitational potential using a satellite pair. J Geophys Res 74:5295–5300

    Article  ADS  Google Scholar 

  • Wood SN (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. J R Statist Soc B62:413–428

    Article  Google Scholar 

  • Xu PL (1992a) Determination of surface gravity anomalies using gradiometric observables. Geophys J Int 110:321–332

    Article  ADS  Google Scholar 

  • Xu PL (1992b) The value of minimum norm estimation of geopotential fields. Geophys J Int 111:170–178

    Article  ADS  Google Scholar 

  • Xu PL (1998) Truncated SVD methods for linear discrete ill-posed problems. Geophys J Int 135:505–514

    Article  ADS  Google Scholar 

  • Xu PL, Rummel R (1992) A generalized regularization method with applications in determination of potential fields. In: Holota P, Vermeer M (eds) Proc 1st continental workshop on the geoid in Europe, Prague, pp 444–457

  • Xu PL, Rummel R (1994a) A simulation study of smoothness methods in recovery of regional gravity fields. Geophys J Int 117:472–486

    Article  ADS  Google Scholar 

  • Xu PL, Rummel R (1994b) A generalized ridge regression method with applications in determination of potential fields. Manus Geod 20:8–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiliang Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Fukuda, Y. & Liu, Y. Multiple Parameter Regularization: Numerical Solutions and Applications to the Determination of Geopotential from Precise Satellite Orbits. J Geodesy 80, 17–27 (2006). https://doi.org/10.1007/s00190-006-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0025-0

Keywords

Navigation