Skip to main content
Log in

Combination of long time-series of troposphere zenith delays observed by VLBI

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Within the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS), long time-series of zenith wet and total troposphere delays have been combined at the level of parameter estimates. The data sets were submitted by eight IVS Analysis Centers (ACs) and cover January 1984 to December 2004. In this paper, the combination method is presented and the time-series submitted by the eight IVS ACs are compared with each other. The combined zenith delays are compared with time-series provided by the International Global Navigation Satellite System (GNSS) Service (IGS), and with zenith delays derived from the European Centre for Medium-Range Weather Forecasts (ECMWF). Before the combination, outliers are eliminated from the individual time-series using the robust BIBER (bounded influence by standardized residuals) estimator. For each station and AC, relative weight factors are obtained by variance component estimation. The mean bias of the IVS ACs’ time-series with respect to the IVS combined time-series is 0.89 mm and the mean root mean square is 7.67 mm. Small differences between stations and ACs can be found, which are due to the inhomogeneous analysis options, different parameterizations, and different treatment of missing in-situ pressure records. Compared to the IGS zenith total delays, the combined IVS series show small positive mean biases and different long-term trends. Zenith wet delays from the ECMWF are used to validate the IVS combined series. Inconsistencies, e.g., long-term inhomogeneity of the in-situ pressure data used for the determination of VLBI zenith delays, are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002). ITRF2000: a new release of the international terrestrial reference frame for Earth science applications. J Geophys Res 107(B10):2214. doi:10.1029/2001JB000561

    Article  Google Scholar 

  • Behrend D, Cucurull L, Vila J, Haas R (2000) An inter-comparison study to estimate zenith wet delays using VLBI, GPS, and NWP models. Earth Planets Space 52:691–694

    Google Scholar 

  • Behrend D, Baver K (eds) (2005) International VLBI service for geodesy and astrometry. Annual Report 2004, NASA/TP-2005-212772, NASA, Greenbelt

  • Berg H (1948) Allgemeine Meteorologie. Dümmler, Bonn, pp. 337

    Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Met 33:379–386

    Article  Google Scholar 

  • Bierman GJ (1977) Factorization methods for discrete sequential estimation. In: Bellman R (ed), Mathematics in science and engineering, vol 128. University of Southern California, p 237

  • Boehm J, Schuh H (2003) Vienna Mapping Functions. In: Schwegmann W, Thorandt V (eds), Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Leipzig, 9–10 May, pp 131–144

  • Boehm J, Schuh H (2004). Vienna Mapping Functions in VLBI analyses. Geophys Res Let 31:L01603.doi:10.1029/ 2003GL018984

    Article  Google Scholar 

  • Davis J, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modelling errors on the estimates of baseline lengths. Radio Sci 20:1593–1607

    Google Scholar 

  • Fey AL, Ma C, Arias EF, Charlot P, Feissel-Vernier M, Gontier AM, Jacobs CS, Li J, MacMillan DS (2004) The second extension of the international celestial reference frame: ICRF-Ext.2. Astron J 127:3587–3608

    Article  Google Scholar 

  • Foerstner W (1979) Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten. Allg. Vermess. Nachr. 11–12, pp 446–453

  • Gambis D (ed) (1999) First extension of the ICRF, ICRF-Ext.1. 1998 IERS Annual Report, Observatoire de Paris, pp 87–114

  • Gendt G (2004) Report of the tropospheric working group for 2002. In: Gowey K, Neilan R, Moore A (eds), 2001–2002 Technical Report IGS Central Bureau, Jet Propulsion Laboratory, Pasadena

  • Gradinarsky LP, Haas R, Elgered G, Johansson JM (2000) Wet path delay and delay gradients inferred from microwave radiometer, GPS and VLBI observations. Earth Planets Space 52:695–698

    Google Scholar 

  • Haas R, Elgered G, Gradinarsky L, Johansson J (2003) Assessing long term trends in the atmospheric water vapor content by combining data from VLBI, GPS, radiosondes and microwave radiometry. In: Schwegmann W, Thorandt V (eds), Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Leipzig, 9–10 May, pp 279–288

  • Haimberger L (2005) Homogenization of radiosonde temperature time series using ERA-40 analysis feedback information. ERA-40 Project Report Series No. 22, ECMWF, Reading, p 70

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New York, p 502

    Google Scholar 

  • Heinkelmann R, Boehm J, Schuh H (2005a) Homogenization of surface pressure recordings and its impact on long-term series of VLBI tropospheric parameters. In: Vennebusch M, Nothnagel A (eds), Proceedings of the 17th working meeting on European VLBI for geodesy and astrometry, Noto, 22–23 April, pp 74–78

  • Heinkelmann R, Boehm J, Schuh H (2005b) IVS long term series of tropospheric parameters. In: Vennebusch M, Nothnagel A (eds), Proceedings of the 17th working meeting on European VLBI for geodesy and astrometry, Noto, 22–23 April, pp 69–73

  • Herring TA (1992) Modelling atmospheric delays in the analysis of space geodetic data, In: Proceedings of refraction of transatmospheric signals in geodesy, Netherlands Geodetic Commission Series, vol. 36, The Hague, pp 157–164

  • Huber PJ (1981) Robust statistics. Wiley, New York, p 308

    Google Scholar 

  • Koch KR (1997) Parameterschätzung und Hypothesentests, 3rd edn. Dümmler, Bonn, p 368

    Google Scholar 

  • Krügel M, Thaller D, Tesmer V, Rothacher M, Angermann D, Schmid R (2007) Tropospheric parameters: combination studies based on homogeneous VLBI and GPS data. J Geod (this issue)

  • Kutterer H, Heinkelmann R, Tesmer V (2003) Robust outlier detection in VLBI data analysis. In: Schwegmann W, Thorandt V (eds), Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Leipzig, 9–10 May, pp 247–255

  • Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrop Sp. Sci. 39:447–462

    Article  Google Scholar 

  • Ma C, Arias EF, Eubanks TM, Fey AL, Gontier AM, Jacobs CS, Sovers OJ, Archinal BA, Charlot P (1998) The international celestial reference frame as realized by very long baseline interferometry. Astron J 116:516–546

    Article  Google Scholar 

  • MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Let 22(9): 1041–1044

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelength. J Geophys Res 101(B2):3227– 3246

    Article  Google Scholar 

  • Niell AE, Coster AJ, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Tech 18:830–850

    Article  Google Scholar 

  • Nothnagel A (2000) Der Einfluss des Wasserdampfes auf die modernen raumgestützten Messverfahren. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt (M.), p 75

  • Nothnagel A (2003) VTRF2003: A conventional VLBI terrestrial reference frame. In: Schwegmann W, Thorandt V (eds), Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Leipzig, 9–10 May, pp 195–199

  • Nothnagel A (2005) VTRF2005: a combined VLBI terrestrial reference frame. In: Vennebusch M, Nothnagel A (eds), Proceedings of the 17th working meeting on European VLBI for geodesy and astrometry, Noto, 22–23 April, pp 118–124

  • Petrov L, Boy J-P (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109:B03405. doi:10.1029/2003JB002500

    Article  Google Scholar 

  • Roberts DH, Lehar J, Dreher JW (1987) Time series analysis with CLEAN. I. Derivation of a spectrum. Astron J Nr 93(4): 968–989

    Article  Google Scholar 

  • Saastamoinen J (1973) Contributions to the theory of atmospheric refraction, Part II. Bull Géod 107:13–34

    Article  Google Scholar 

  • Schlueter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the global reference systems. Adv Space Res 30(2):145–150

    Article  Google Scholar 

  • Schmid R, Rothacher M, Thaller D, Steigenberger P (2005) Absolute phase center corrections of satellite and receiver antennas. GPS Solut 9. doi:10.1007/s10291-005-0134-x

  • Schuh H, Boehm J (2003) Determination of tropospheric parameters within the IVS Pilot Project. Österreichische Zeitung für Vermessung & Geoinformation (VGI) 1/2003, pp 14–20

  • Schuh H, Panafidina N, Boehm J, Heinkelmann R (2006) Climatic signals observed by VLBI. Acta Geod Geoph Hung 41(2). doi:10.1556/AGeod.41.2006.2.2

  • Skurikhina E (2001) On computations of antenna thermal deformation in VLBI data processing. In: Behrend D, Rius A (eds), Proceedings of the 15th working meeting on European VLBI for geodesy and astrometry, Barcelona, 7–8 September, pp 124–130

  • Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2005) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11). doi:10.1007/s00190-005-0010-z

  • Steigenberger P, Tesmer V, Krügel M, Schmid R, Thaller D, Vey S, Rothacher M (2007) Comparisons of homogeneously reprocessed GPS and VLBI long time series of troposphere zenith delays and gradients. J Geod (this issue)

  • Steinforth C, Nothnagel A (2004) Considering a priori correlations in the IVS combined EOP Series. In: Vandenberg NR, Baver KD (eds), IVS 2004 general meeting proceedings, Ottawa, 9–11 February, pp 413–417

  • Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF, and position time-series estimated from VLBI. J Geod (this issue)

  • Titov O, Schuh H (2000) Short periods in Earth rotation seen in VLBI data analysed by the least-squares collocation method. IERS Technical Note, 28, Observatoire de Paris, pp 33–41

  • Titov O, Yakovleva HG (2000) Seasonal variations in radial components of VLBI stations. Astron Astrophys Trans 4:591–603

    Google Scholar 

  • Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 Software for VLBI Data Analysis. In: Vandenberg NR and Baver KD (eds), IVS 2004 general meeting proceedings, Ottawa, 9–11 February, pp 267–271

  • Tuomenvirta H, Alexandersson H (1996) Review on the methodology of the standard normal homogeneity test (SNHT). In: Hungarian Meteorological Service (eds), Proceedings of the 1st seminar for homogenization of surface climatological data, Budapest, 6–12 October, pp 35–45

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 Reanalysis. Q J R Meteorol Soc 131. doi:10.1256/qj.04.176

  • Wicki F (1992) Robuste M - Schätzer und Zuverlässigkeit. Berichte des Instituts für Geodäsie und Photogrammetrie Rep No. 190, Eidgenössische Technische Hochschule Zürich

  • Wicki F (1999) Robuste Schätzverfahren für die Parameterschätzung in geodätischen Netzen. Rep No. 67, Mitteilungen des Instituts für Geodäsie und Photogrammetrie an der Eidgenössischen Technischen Hochschule Zürich

  • Wicki F (2001) Robust Estimator for the adjustment of geodetic networks. In: Carosio A, Kutterer H (eds), Proceedings of the first international symposium on robust statistics and fuzzy techniques in geodesy and GIS, IAG-SSG 4.190 Non-probabilistic assessment in geodetic data analysis, pp 53–60

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Heinkelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinkelmann, R., Boehm, J., Schuh, H. et al. Combination of long time-series of troposphere zenith delays observed by VLBI. J Geod 81, 483–501 (2007). https://doi.org/10.1007/s00190-007-0147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-007-0147-z

Keywords

Navigation