Skip to main content
Log in

Fitting gravimetric geoid models to vertical deflections

  • Short Note
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Regional gravimetric geoid and quasigeoid models are now commonly fitted to GPS-levelling data, which simultaneously absorbs levelling, GPS and quasi/geoid errors due to their inseparability. We propose that independent vertical deflections are used instead, which are not affected by this inseparability problem. The formulation is set out for geoid slopes and changes in slopes. Application to 1,080 astrogeodetic deflections over Australia for the AUSGeoid98 model shows that it is feasible, but the poor quality of the historical astrogeodetic deflections led to some unrealistic values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baarda W (1968) A testing procedure for use in geodetic networks, Publications on Geodesy, New Series, 2(5). Netherlands Geodetic Commission, Delft

  • Bomford AG (1967) The geodetic adjustment of Australia 1963–66. Surv Rev 19(144): 52–71

    Google Scholar 

  • Bomford G (1980) Geodesy, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Farin GE (2001) Curves and surfaces for CAGD: a practical guide, 5th edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Featherstone WE (1998) Do we need a gravimetric geoid or a model of the Australian height datum to transform GPS heights in Australia? Aust Surv 43(4): 273–280

    Google Scholar 

  • Featherstone WE (2001) Absolute and relative testing of gravimetric geoid models using global positioning system and orthometric height data. Comput Geosci 27(7):807–814. doi:10.1016/S0098-3004(00)00169-2

    Article  Google Scholar 

  • Featherstone WE (2004) Evidence of a north–south trend between AUSGeoid98 and AHD in southwest Australia. Surv Rev 37(291): 334–343

    Google Scholar 

  • Featherstone WE (2006a) Yet more evidence for a north–south slope in the AHD. J Spat Sci 51(2):1–6; corrigendum in 52(1):65–68

  • Featherstone WE (2006b) The pitfalls of using GPS and levelling data to test gravity field models. EGU general assembly, Vienna

    Google Scholar 

  • Featherstone WE, Kirby JF, Kearsley AHW, Gilliand JR, Johnston J, Steed R, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS/levelling data, J Geod 75(5–6):313–330. doi:10.1007/s001900100177

    Google Scholar 

  • Featherstone WE, Rüeger JM (2000) The importance of using deviations of the vertical in the reduction of terrestrial survey data to a geocentric datum, Trans Tasman Surv 1(3):46–61 (erratum in Aust Surv 47(1):7)

    Google Scholar 

  • Featherstone WE, Sproule DM (2006) Fitting AUSGeoid98 to the Australian height datum using GPS data and least squares collocation: application of a cross validation technique. Surv Rev 38(301): 573–582

    Google Scholar 

  • Featherstone WE, Morgan L (2007) Validation of the AUSGeoid98 model in Western Australia using historic astrogeodetically observed deviations of the vertical. J R Soc West Aust 90(3): 143–149

    Google Scholar 

  • Forsberg R (1998) Geoid tailoring to GPS—with example of a 1-cm geoid of Denmark. Finnish Geodetic Institute Report 98(4): 191–198

    Google Scholar 

  • Fotopoulos G (2005) Calibration of geoid error models via a combined adjustment of ellipsoidal, orthometric and gravimetric geoid height data, J Geod 79(1–3):111–123. doi:10.1007/s00190-005-0449-y

    Article  Google Scholar 

  • Grafarend EW (1997) Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline. Ann Geophys 40(5): 1233–1247

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hirt C, Bürki B (2002) The digital zenith camera—a new high-precision and economic astrogeodetic observation system for real-time measurement of deflections of the vertical. In: Tziavos IN(eds) Gravity and geoid 2002. Department of Surveying and Geodesy, Aristotle University of Thessaloniki, pp 389–394

    Google Scholar 

  • Hirt C, Flury J (2007) Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J Geod 82(4–5):231–248. doi:10.1007/s00190-007-0173-x

    Google Scholar 

  • Hirt C, Denker H, Flury J, Lindau A, Seeber G (2007) Astrogeodetic validation of gravimetric quasigeoid models in the German Alps– first results. In: Kiliçoğlu A, Forsberg R(eds) Gravity field of the earth. General command of mapping, Ankara

    Google Scholar 

  • Hirt C, Seeber G (2007) High-resolution local gravity field determination at the sub-millimetre level using a digital zenith camera system. In: Tregoning P, Rizos C(eds) Dynamic planet. Springer, Berlin, pp 316–321

    Chapter  Google Scholar 

  • Hirt C, Seeber G (2008) Accuracy analysis of vertical deflection data observed with the Hannover digital zenith camera system TZK2-D. J Geod 82(6):347–356. doi:10.1007/s00190-007-0184-7

    Article  Google Scholar 

  • Jekeli C (1999) An analysis of vertical deflections derived from high-degree spherical harmonic models. J Geod 73(1):10–22. doi:10.1007/s001900050213

    Article  Google Scholar 

  • Jiang Z, Duquenne H (1996) On the combined adjustment of a gravimetrically determined geoid and GPS levelling stations. J Geod 70(8):505–514. doi:10.1007/s001900050039

    Google Scholar 

  • Kearsley AHW (1976) The computation of deflections of the vertical from gravity anomalies, Unisurv Rep S15. School of Surveying, Univ of New South Wales, Sydney

    Google Scholar 

  • Kotsakis C (2008) Transforming ellipsoidal heights and geoid undulations between different geodetic reference frames. J Geod 82(4–5): 249–260. doi:10.1007/s00190-007-0174-9

    Article  Google Scholar 

  • Kotsakis C, Sideris MG (1999) On the adjustment of combined GPS/levelling/geoid networks. J Geod 73(8):412–421. doi:10.1007/s001900050261

    Article  Google Scholar 

  • Kuang S (1996) Geodetic network analysis and optimal design: concepts and applications. Ann Arbor Press, Chelsea

    Google Scholar 

  • Kühtreiber N (1999) Combining gravity anomalies and deflections of the vertical for a precise Austrian geoid. Bollettino di Geofisica Teorica ed Applicata 40(3–4): 545–553

    Google Scholar 

  • Kühtreiber N, Abd-Elmotaal HA (2007) Ideal combination of deflection components and gravity anomalies for precise geoid computation. In: Tregoning P, Rizos C(eds) Dynamic planet. Springer, Berlin, pp 259–265

    Chapter  Google Scholar 

  • Marti U (2007) Comparison of high precision geoid models in Switzerland. In: Tregoning P, Rizos C(eds) Dynamic planet. Springer, Berlin, pp 377–382

    Chapter  Google Scholar 

  • Mather RS (1970) The geodetic orientation vector for the Australian geodetic datum, Geophys J R Astron Soc 22(1):55–81. doi:10.1111/j.1365-246X.1971.tb03583.x

    Google Scholar 

  • Milbert DG (1995) Improvement of a high resolution geoid model in the United States by GPS height on NAVD88 benchmarks. Int Geoid Serv Bull 4: 13–36

    Google Scholar 

  • Moritz H (1980) Geodetic reference system 1980. Bull Géod 54(4): 395–405

    Article  Google Scholar 

  • Müller A, Bürki B, Kahle HG, Hirt C, Marti U (2007a) First results from new high-precision measurements of deflections of the vertical in Switzerland. In: Jekeli C, Bastos L, Fernandes J(eds) Gravity geoid and space missions. Springer, Berlin, pp 143–148

    Google Scholar 

  • Müller A, Bürki B, Limpach P, Kahle HG, Grigoriadis VN, Vergos GS, Tziavos IN (2007b) Validation of marine geoid models in the North Aegean Sea using satellite altimetry, marine GPS data and astrogeodetic measurements. In: Kiliçoğlu A, Forsberg R(eds) Gravity field of the earth. General command of mapping, Ankara

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth gravitational model to degree 2160: EGM2008. EGU general assembly, Vienna

    Google Scholar 

  • Prutkin I, Klees R (2007) On the non-uniqueness of local quasi-geoids computed from terrestrial gravity anomalies. J Geod 82(3):147–156. doi:10.1007/s00190-007-0161-1

    Article  Google Scholar 

  • Soltanpour A, Nahavandchi H, Featherstone WE (2006) The use of second-generation wavelets to combine a gravimetric geoid model with GPS-levelling data. J Geod 80(2):82–93. doi:10.1007/s00190-006-0033-0

    Article  Google Scholar 

  • Tenzer R, Vaníček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79(1–3): 82–92. doi:10.1007/s00190-005-0445-2

    Article  Google Scholar 

  • Torge W (2001) Geodesy, 3rd edn. de Gruyter, Berlin

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans AGU 79(47): 579

    Article  Google Scholar 

  • Zhong D (1997) Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. J Geod 71(9):552–561. doi:10.1007/s001900050123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. E. Featherstone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Featherstone, W.E., Lichti, D.D. Fitting gravimetric geoid models to vertical deflections. J Geod 83, 583–589 (2009). https://doi.org/10.1007/s00190-008-0263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-008-0263-4

Keywords

Navigation