Skip to main content
Log in

Calibration of a superconducting gravimeter with an absolute atom gravimeter

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We present a 27-day-long common view measurement of an absolute cold atom gravimeter (CAG) and a relative iGrav superconducting gravimeter, which we use to calibrate the iGrav scale factor. This allowed us to push the CAG long-term stability down to the level of 0.5 nm s\(^{-2}\). We investigate the impact of the duration of the measurement on the uncertainty in the determination of the correlation factor and show that it is limited to about 3‰ by the coloured noise of our cold atom gravimeter. A 3-day-long measurement session with an additional FG5X absolute gravimeter allows us to directly compare the calibration results obtained with two different absolute meters. Based on our analysis, we expect that with an improvement of its long-term stability, the CAG will allow to calibrate the iGrav scale factor to better than the per mille level (1\(\sigma \) level of confidence) after only 1 day of concurrent measurements for maximum tidal amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The superconducting gravimeter data are available on the IGETS database at http://doi.org/10.5880/igets.tr.l1.001; the other data that support the findings of this study are available from the corresponding author upon reasonable request.

Notes

  1. doi.org/10.5880/igets.tr.l1.001

References

  • Achilli V, Baldi P, Casula G, Errani M, Focardi S, Guerzoni M, Palmonari F, Raguni G (1995) A calibration system for superconducting gravimeters. Bull Géodésique 69:73–80

    Article  Google Scholar 

  • Almavict M, Hinderer J, Francis O, Mäkinen J (1998) Comparisons between absolute (AG) and superconducting (SG) gravimeters, Geodesy on the Move. Int Assoc Geodesy Symp 119:24–29

    Article  Google Scholar 

  • Baker TF, Bos M (2003) Validating earth and ocean tide models using tidal gravity measurements. Geophys J Int 152:468–485

    Article  Google Scholar 

  • Crossley D, Calvo M, Rosat S, Hinderer J (2018) More thoughts on AG-SG comparisons and SG scale factor determinations. Pure Appl Geophys 175:1699–1725

    Article  Google Scholar 

  • Crossley D, Hinderer J, Casula G, Francis O, Hsu HT, Imanishi Y, Jentzsch G, Kääriänen J, Merriam J, Meurers B, Neumeyer J, Richter B, Shibuya K, Sato T, Van Dam T (1999) Network of superconducting gravimeters benefits a number of disciplines. EOS 80(11):121/125–126

  • Denker H, Timmen L, Voigt C, Weyers S, Peik E, Margolis HS, Delva P, Wolf P, Petit G (2018) Geodetic methods to determine the relativistic redshift at the level of 10\(^{-18}\) in the context of international timescales: a review and practical results 2018. J Geod 92:487–516

    Article  Google Scholar 

  • Falk R, Harnisch M, Harnisch G, Nowak I, Richter B, Wolf P (2001) Calibration of the superconducting gravimeters SG103, C023, CD029 and CD030. J Geodetic Soc Jpn 47(1):22–27

    Google Scholar 

  • Farah T, Guerlin Ch, Landragin A, Bouyer Ph, Gaffet S, Pereira Dos Santos F, Merlet S (2014) Underground operation at best sensitivity of the mobile LNE-SYRTE Cold Atom Gravimeter. Gyrosc Navig 5(4):266–274

    Article  Google Scholar 

  • Farah T, Gillot P, Cheng B, Landragin A, Merlet S, Pereira Dos Santos F (2014) Effective velocity distribution in an atom gravimeter: effect of the convolution with the response of the detection. Phys Rev A 90:023606

    Article  Google Scholar 

  • Francis O et al (2015) CCM.G-K2 key comparison. Metrologia 52(Tech. Suppl.):07009

  • Francis O (1997) Calibration of the C021 superconducting gravimeter in Membach (Belgium) using 47 days of absolute gravity measurements. Int Assoc Geodesy Symp Gravit Geoid Mar Geodesy 117:212–219

    Article  Google Scholar 

  • Francis O et al (2013) The European Comparison of absolute gravimeters 2011 (ECAG-2011) in Walferdange, Luxembourg: results and recommendations. Metrologia 50:257–268

    Article  Google Scholar 

  • Francis O, van Dam T (2002) Evaluation of the precision of using absolute gravimeters to calibrate superconducting gravimeters. Metrologia 39:485–488

    Article  Google Scholar 

  • Francis O, Hendrickx M (2001) Calibration of the LaCoste-Romberg 906 by comparison with the superconducting gravimeter C021 in Membach (Belgium). J Geodetic Soc Jpn 47:16–21

    Google Scholar 

  • Francis O, Niebauer TM, Sasagawa G, Klopping F, Gschwind J (1998) Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder. Geophys Res Lett 25:1075–1078

    Article  Google Scholar 

  • Francis O, Lampitelli C, Klein G, Van Camp M, Pálinkáš V (2011) Comparison between the transfer functions of three superconducting gravimeters. Bull Inf Marées Terr 147:11857–11868

    Google Scholar 

  • Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H-G, Müller J, Peters A (2016) Mobile quantum gravity sensor with unprecedented stability. J Phys Conf Ser 723:012050

    Article  Google Scholar 

  • Fuduka Y, Iwano S, Ikeda H, Hiraoka Y, Doi K (2005) Calibration of the superconducting gravimeter CT#043 with an absolute gravimeter FG5#210 at Syowa Station, Antarctica. Polar Geosci 18:41–48

    Google Scholar 

  • Gauguet A, Mehlstäubler TE, Lèvéque T, Le Gouët J, Chaibi W, Canuel B, Clairon A, Pereira Dos santos F, Landragin A (2008) Off-resonant Raman transition impact in an atom interferometer. Phys Rev A 78:043615

    Article  Google Scholar 

  • Geiger R et al (2015) Matter-wave laser Interferometric Gravitation Antenna (MIGA) : new perspectives for fundamental physics and geosciences. In: Proceedings of the 50th Rencontres de Moriond “100 years after GR”

  • Gillot P, Francis O, Landragin A, Pereira Dos Santos F, Merlet S (2014) Stability comparison of two absolute gravimeters: optical versus atomic interferometers. Metrologia 51:L15–L17

    Article  Google Scholar 

  • Goodkind JM (1999) The superconducting gravimeter. Rev Sci Instrum 70(11):4131–4152

    Article  Google Scholar 

  • Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M, Peters A (2013) First gravity measurements using the mobile atom interferometer GAIN. Appl Phys B 113:49–55

    Article  Google Scholar 

  • Hinderer J, Florsch N, Mäkinen J, Legros H, Faller JE (1991) On the calibration of a superconducting gravimeter using absolute gravity measurements. Geophys J Int 106:491–497

    Article  Google Scholar 

  • Hinderer J, Crossley D, Warburton RJ (2015) Gravimetric methods - superconducting gravity meters. Treatise on Geophysics, Elsevier, ISBN 978-0-444-53803-1

  • Hu Z-K, Sun B-L, Duan X-C, Zhou M-K, Chen L-L, Zhan S, Zhang Q-Z, Luo J (2013) Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys Rev A 88:043610

    Article  Google Scholar 

  • Imanishi Y, Higashi T, Fukuda Y (2002) Calibration of the superconducting gravimeter T011 by parallel observation with the absolute gravimeter FG5#210—a Bayesian approach. Geophys J Int 151:867–878

    Article  Google Scholar 

  • Jiang Z et al (2012) The \(8^{th}\) international comparison of absolute gravimeters 2009: the first Key Comparison (CCM.G-K1) in the field of absolute gravimetry. Metrologia 49:666–684

    Article  Google Scholar 

  • Karcher R, Imanaliev A, Merlet S, Pereira dos Santos F (2018) Improving the accuracy of atom interferometers with ultracold sources. New J Phys 20:113041

    Article  Google Scholar 

  • Kasevich M, Chu S (1991) Atomic interferometry using stimulated Raman transition. Phys Rev Lett 67:181–184

    Article  Google Scholar 

  • Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S, Pereira Dos Santos F (2011) Influence of transverse motion within an atomic gravimeter. New J Phys 13:065025

    Article  Google Scholar 

  • Melchior P (1994) A new data bank for tidal gravity measurements (DB 92). Phys Earth Planet Int 82:125–155

    Article  Google Scholar 

  • Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B (2018) Gravity measurements below 10\(^{-9}g\) with a transportable absolute quantum gravimeter. Sci Rep 8:12300

    Article  Google Scholar 

  • Merlet S, Kopaev A, Diament M, Genevès G, Landragin A, Pereira Dos Santos F (2008) Micro-gravity investigations for the LNE watt balance project. Metrologia 45:265–274

    Article  Google Scholar 

  • Merlet S, Bodart Q, Malossi N, Landragin A, Pereira dos Santos F, Gitlein O, Timmen L (2010) Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47:L9–L11

    Article  Google Scholar 

  • Meurers B (2012) Superconducting gravimeter calibration by colocated gravity observations: results from GWRC025. Int J Geophys 954271

  • Meurers B (2002) Aspects of gravimeter calibration by time domain comparison of gravity records. Bulletin d’Information des Marées Terrestres 135:10643–10650

    Google Scholar 

  • Meurers B, Van Camp M, Francis O, Pálinkáš V (2016) Temporal variation of tidal parameters in superconducting gravimeter time-series. Geophys J Int 205:284–300

    Article  Google Scholar 

  • Niebauer TM, Sasagawa GS, Faller JE, Hilt R, Klopping F (1995) A new generation of absolute gravimeters. Metrologia 32(3):159–180

    Article  Google Scholar 

  • Niebauer TM, Billson R, Ellis B, Mason B, van Westrum D, Klopping F (2013) Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter. Metrologia 48:154–163

    Article  Google Scholar 

  • Peters A, Chung KY, Chu S (2001) High-precision gravity measurements using atom interferometry. Metrologia 38:25–61

    Article  Google Scholar 

  • Richter B, Wilmes H, Nowak I (1995) The Frankfurt calibration system for relative gravimeters. Metrologia 32(3):217–223

    Article  Google Scholar 

  • Rosat S, Hinderer J (2018) Limits of detection of gravimetric signals on Earth. Sci Rep 8:15324

    Article  Google Scholar 

  • Rosat S, Boy J-P, Ferhat G, Hinderer J, Almavict M, Gegout P, Luck B (2009) Analysis of a 10-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology. J Geodyn 48(3–5):360–365

    Article  Google Scholar 

  • Scherneck H-G, Rajner M, Engfeldt A (2020) Superconducting gravimeter and seismometer shedding light on FG5’s offset, trends and noise: what observations at Onsala Space Observatory can tell us. J Geod 94:80

    Article  Google Scholar 

  • Stock M, Davis R, de Mirandès E, Milton MJT (2018) The revision of the SI-the result of three decades of progress in metrology. Metrologia 56:022001

    Article  Google Scholar 

  • Tamura Y, Sato T, Fukuda Y, Higashi T (2005) Scale factor calibration of a superconducting gravimeter at Esashi Station, Japan, using absolute gravity measurements. J Geodesy 78:481–488

    Article  Google Scholar 

  • Thomas M, Ziane D, Pinot P, Karcher R, Imanaliev A, Pereira Dos Santos F, Merlet S, Piquemal F, Espel P (2017) A determination of the Planck constant using the LNE Kibble balance in air. Metrologia 54:468–480

    Article  Google Scholar 

  • Van Camp M, Wenzel H-G, Schott P, Vauterin P, Francis O (2000) Accurate transfer function determination for superconducting gravimeters. Geophys Res Lett 27(1):37–40

    Article  Google Scholar 

  • Van Camp M, Williams SDP, Francis O (2005) Uncertainty of absolute gravity instruments. J Geophys Res 110:B05406

    Google Scholar 

  • Van Camp M, Meurers B, De Viron O, Forbriger T (2016) Optimized strategy for the calibration of superconducting gravimeters at the one per mille level. J Geod 90:91–99

    Article  Google Scholar 

  • Van Camp M, De Viron O, Watlet A, Meurers B, Francis O, Caudron C (2017) Geophysics from terrestrial time variable gravity measurements. Rev Geophys 55:938–992

    Article  Google Scholar 

  • Wang S-K, Zhao Y, Zhuang W, Li T-C, Wu S-Q, Feng J-Y, Li C-J (2018) Shift evaluation of the atomic gravimeter NIM-AGrb-1 and its comparison with FG5X. Metrologia 55:360–365

    Article  Google Scholar 

  • Warburton R, Beaumont Ch, Goodkind JM (1975) The effect of ocean tide loading on tides of the solid earth observed with the superconducting gravimeter. Geophys J R Astron Soc 43:707–720

    Article  Google Scholar 

  • Wziontek H, Bonvalot S, Falk R, Gabalda G, Mäkinen J, Pálinkáš V, Rülke A, Vitushkin L (2021) Status of the international gravity reference system and frame. J Geodesy 95:7

    Article  Google Scholar 

Download references

Acknowledgements

This research is carried on within the kNOW and ITOC projects, which acknowledges the financial support of the EMRP. The EMRP was jointly funded by the European Metrology Research Programme (EMRP) participating countries within the European Association of National Metrology Institutes (EURAMET) and the European Union. B.C. thanks the Labex First-TF for financial support. This work has been supported by the Paris Île-de-France Région in the framework of DIM SIRTEQ.

Author information

Authors and Affiliations

Authors

Contributions

P.G. performed the 27-day atom measurements with B.C. He performed part of the data analysis during his Ph.D. under the supervision of S.M. and F.P.D.S. P.G., B.C., R.K. and A.I. improved the atom sensor and performed atom measurements during their stay in the group. These measurements allowed for calibration of the superconducting gravimeter. L.T. performed FG5X measurements. S.M. and F.P.D.S. are responsible of gravimetry activities at LNE-SYRTE. They developed and improved the atom gravimeter, installed and use the superconducting gravimeter, and performed measurements with both sensors. They calibrated the superconducting gravimeter and initiated, finalised this study and wrote the paper.

Corresponding author

Correspondence to Sébastien Merlet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlet, S., Gillot, P., Cheng, B. et al. Calibration of a superconducting gravimeter with an absolute atom gravimeter. J Geod 95, 62 (2021). https://doi.org/10.1007/s00190-021-01516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01516-6

Keywords

Navigation