Skip to main content
Log in

Interval estimation of \(P(X<Y)\) in ranked set sampling

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This article deals with constructing a confidence interval for the reliability parameter using ranked set sampling. Some asymptotic and resampling-based intervals are suggested, and compared with their simple random sampling counterparts using Monte Carlo simulations. Finally, the methods are applied on a real data set in the context of agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ayech MW, Ziou D (2015) Segmentation of Terahertz imaging using \(k\)-means clustering based on ranked set sampling. Expert Syst Appl 42:2959–2974

    Article  Google Scholar 

  • Chen Z (1999) Density estimation using ranked-set sampling data. Environ Ecol Stat 6:135–146

    Article  Google Scholar 

  • Chen Z (2007) Ranked set sampling: its essence and some new applications. Environ Ecol Stat 14:355–363

    Article  MathSciNet  Google Scholar 

  • Chen Z, Bai Z, Sinha BK (2004) Ranked set sampling: theory and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Halls LK, Dell TR (1966) Trial of ranked-set sampling for forage yields. For Sci 12:22–26

    Google Scholar 

  • Hollander M, Wolfe DA, Chicken E (2014) Nonparametric statistical methods, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Howard RW, Jones SC, Mauldin JK, Beal RH (1982) Abundance, distribution, and colony size estimates for Reticulitermes spp. (Isoptera: Rhinotermitidae) in Southern Mississippi. Environ Entomol 11:1290–1293

    Article  Google Scholar 

  • Kotz S, Lumelskii Y, Pensky M (2003) The stress-strength model and its generalizations. Theory and applications. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Kvam P (2003) Ranked set sampling based on binary water quality data with covariates. J Agric Biol Environ Stat 8:271–279

    Article  Google Scholar 

  • MacEachern SN, Ozturk O, Stark GV, Wolfe DA (2002) A new ranked set sample estimator of variance. J R Stat Soc Ser B 64:177–188

    Article  MathSciNet  MATH  Google Scholar 

  • Mahdizadeh M, Zamanzade E (2016) Kernel-based estimation of \(P(X>Y)\) in ranked set sampling. SORT 40:243–266

    MathSciNet  MATH  Google Scholar 

  • McIntyre GA (1952) A method of unbiased selective sampling using ranked sets. Aust J Agric Res 3:385–390

    Article  Google Scholar 

  • Modarres R, Hui TP, Zheng G (2006) Resampling methods for ranked set samples. Comput Stat Data Anal 51:1039–1050

    Article  MathSciNet  MATH  Google Scholar 

  • Murray RA, Ridout MS, Cross JV (2000) The use of ranked set sampling in spray deposit assessment. Asp Appl Biol 57:141–146

    Google Scholar 

  • Presnell B, Bohn L (1999) U-statistics and imperfect ranking in ranked set sampling. J Nonparametr Stat 10:111–126

    Article  MathSciNet  MATH  Google Scholar 

  • Quenouille MH (1956) Notes on bias in estimation. Biometrika 43:353–360

    Article  MathSciNet  MATH  Google Scholar 

  • Sengupta S, Mukhuti S (2008) Unbiased estimation of \(P(X>Y)\) using ranked set sample data. Statistics 42:223–230

    Article  MathSciNet  MATH  Google Scholar 

  • Sheather SJ (2004) Density estimation. Stat Sci 19:588–597

    Article  MATH  Google Scholar 

  • Stokes SL (1980) Estimation of variance using judgment ordered ranked set samples. Biometrics 36:35–42

    Article  MathSciNet  MATH  Google Scholar 

  • Terpstra J, Miller ZA (2006) Exact inference for a population proportion based on a ranked set sample. Commun Stat Simul Comput 35:19–26

    Article  MathSciNet  MATH  Google Scholar 

  • Tukey JW (1958) Bias and confidence in not quite large samples (abstract). Ann Math Stat 29:614

    Article  Google Scholar 

  • Wang JF, Stein A, Gao BB, Ge Y (2012) A review of spatial sampling. Spat Stat 2:1–14

    Article  Google Scholar 

  • Wolfe DA (2012) Ranked set sampling: its relevance and impact on statistical inference. ISRN Probability and Statistics, pp 1–32

  • Yin J, Hao Y, Samawi H, Rochani H (2016) Rank-based kernel estimation of the area under the ROC curve. Stat Methodol 32:91–106

    Article  MathSciNet  Google Scholar 

  • Zamanzade E, Mahdizadeh M (2017) A more efficient proportion estimator in ranked set sampling. Stat Probab Lett 129:28–33

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by Iran National Science Foundation (INSF). The authors wish to thank the reviewers for insightful comments and suggestions that improved an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahdizadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 72 KB)

Appendix

Appendix

In this section, we first provide some results about the two-sample U-statistics, and then present proofs of Propositions 1 and 2.

Suppose that \(h(x_1,\ldots ,x_p;y_1,\ldots ,y_q)\) is a symmetric kernel of degree (pq) for the parameter \(\theta =E\left( h \right) \). For independent simple random samples \(X_1,\ldots ,X_{mk}\) from F, and \(Y_1,\ldots ,Y_{n\ell }\) from G, the corresponding two-sample U-statistic for \(\theta \) is given by

$$\begin{aligned} U_{\text {SRS}}= & {} U(X_1,\ldots ,X_{mk};Y_1,\ldots ,Y_{n\ell }) \\= & {} \frac{1}{{mk \atopwithdelims ()p}{n\ell \atopwithdelims ()q}} \sum _{{\varvec{\alpha }} \in \mathcal {A}} \sum _{{\varvec{\beta }} \in \mathcal {B}} h(X_{\alpha _1},\ldots ,X_{\alpha _p};Y_{\beta _1},\ldots ,Y_{\beta _q}), \end{aligned}$$

where \({\varvec{\alpha }}=(\alpha _1,\ldots ,\alpha _p)\), \({\varvec{\beta }}=(\beta _1,\ldots ,\beta _q)\), and \(\mathcal {A}\) (\(\mathcal {B}\)) is the collection of all subsets of size p (q) chosen from integers \(1,\ldots ,mk\) (\(1,\ldots ,n\ell \)). Let

$$\begin{aligned} h_{10}(x)=E\left( h(x,X_2,\ldots ,X_p;Y_1,\ldots ,Y_q) \right) , \end{aligned}$$

and

$$\begin{aligned} h_{01}(y)=E\left( h(X_1,\ldots ,X_p;y,Y_2,\ldots ,Y_q) \right) . \end{aligned}$$

Also, in connection with the above functions, define \(\zeta _{10}=Var\left( h_{10}(X_1) \right) \) and \(\zeta _{01}=Var\left( h_{01}(Y_1) \right) \).

Let \(\{X_{[r]i}: r=1,\ldots ,k\,;i=1,\ldots ,m \}\) and \(\{Y_{[s]j}: s=1,\ldots ,\ell \,;j=1,\ldots ,n \}\) be independent ranked set samples from two populations with the distribution functions F and G, respectively. The two-sample U-statistic for \(\theta \) in the RSS is given by

$$\begin{aligned} U_{\text {RSS}}=U({\mathbf {X}}_1,\ldots ,{\mathbf {X}}_m;\mathbf {Y}_1,\ldots ,\mathbf {Y}_n), \end{aligned}$$

where \({\mathbf {X}}_i=(X_{[1]i},\ldots ,X_{[k]i})\) (\(i=1,\ldots ,m\)), and \(\mathbf {Y}_j=(Y_{[1]j},\ldots ,Y_{[\ell ]j})\) (\(j=1,\ldots ,n\)). In addition, suppose \(\gamma _{r 0}=E\left( h_{10}(X_{[r]1}) \right) \), \(\gamma _{0 s}=E\left( h_{01}(Y_{[s]1}) \right) \), \(\xi _{r 0}=Var\left( h_{10}(X_{[r]1}) \right) \), and \(\xi _{0 s}=Var\left( h_{01}(Y_{[s]1}) \right) \).

Assume that \(N=mk+n\ell \), and \((mk)/N \rightarrow \lambda \in (0,1)\) as \(m,n \rightarrow \infty \). Then, according to Theorem 2 in Presnell and Bohn (1999),

$$\begin{aligned} \sqrt{N}(U_{\text {RSS}}-\theta ) {\mathop {\rightarrow }\limits ^{d}} N\left( 0,\frac{p^2 \phi }{\lambda }+\frac{q^2 \varphi }{1-\lambda }\right) , \end{aligned}$$

where

$$\begin{aligned} \phi =\zeta _{10}-\frac{1}{k} \sum _{r=1}^k \left( \gamma _{r 0} -\theta \right) ^2, \end{aligned}$$

and

$$\begin{aligned} \varphi =\zeta _{01}-\frac{1}{\ell } \sum _{s=1}^\ell \left( \gamma _{0 s} -\theta \right) ^2. \end{aligned}$$

If we set \(h(x,y)=I(x<y)\), which is a kernel of degree (1, 1), then \(\theta =P(X<Y)\) and Proposition 1 follows.

Also, from Corollary 2 in Presnell and Bohn (1999), the asymptotic relative efficiency of \(U_{\text {RSS}}\) to \(U_{\text {SRS}}\) is

$$\begin{aligned} ARE(U_{\text {RSS}},U_{\text {SRS}})=1+\frac{\frac{(1-\lambda ) p^2}{k}\sum _{r=1}^k \left( \gamma _{r 0}-\theta \right) ^2 + \frac{\lambda q^2}{\ell }\sum _{s=1}^\ell \left( \gamma _{0 s}-\theta \right) ^2 }{\frac{(1-\lambda ) p^2}{k}\sum _{r=1}^k \xi _{r 0} + \frac{\lambda q^2}{\ell }\sum _{s=1}^\ell \xi _{0 s}}. \end{aligned}$$

Again, by the same choice of the kernel mentioned above, Proposition 2 is concluded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdizadeh, M., Zamanzade, E. Interval estimation of \(P(X<Y)\) in ranked set sampling. Comput Stat 33, 1325–1348 (2018). https://doi.org/10.1007/s00180-018-0795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0795-x

Keywords

Navigation