Skip to main content
Log in

Computational aspects of continuous–discrete extended Kalman-filtering

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

This paper elaborates how the time update of the continuous–discrete extended Kalman-filter (EKF) can be computed in the most efficient way. The specific structure of the EKF-moment differential equations leads to a hybrid integration algorithm, featuring a new Taylor–Heun-approximation of the nonlinear vector field and a modified Gauss–Legendre-scheme, generating positive semidefinite solutions for the state error covariance. Furthermore, the order of consistency and stability behavior of the outlined procedure is investigated. The results are incorporated into an algorithm with adaptive controlled step size, assuring a fixed numerical precision with minimal computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold VI (2001). Gewöhnliche Differentialgleichungen, 2nd edn. Springer, Heidelberg

    Google Scholar 

  2. Aït-Sahalia Y (2002). Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1): 223–262

    Article  MATH  MathSciNet  Google Scholar 

  3. Athans M, Wishner RP and Bertolini AB (1968). Suboptimal state estimation for continuous-time nonlinear systems from discrete noisy measurements. IEEE Trans Auto Control 13(5): 504–514

    Article  Google Scholar 

  4. Curtiss CF and Hirschfelder JO (1952). Integration of stiff equations. Proc Nat Acad Sci USA 38(3): 235–243

    Article  MATH  MathSciNet  Google Scholar 

  5. Dormand JR and Prince PJ (1980). A family of embedded Runge–Kutta formulae. J Comput Appl Math 6: 19–26

    Article  MATH  MathSciNet  Google Scholar 

  6. Enright WH, Hull TE and Lindberg B (1975). Comparing numerical methods for stiff systems of ODEs. BIT Numer Math 15(1): 10–48

    Article  MATH  Google Scholar 

  7. Gard TC (1988). Introduction to stochastic differential equations. Marcel Dekker, New York

    MATH  Google Scholar 

  8. Gottwald BA and Wanner G (1981). A reliable rosenbrock integrator for stiff differential equations. Computing 26(4): 355–360

    Article  MATH  MathSciNet  Google Scholar 

  9. Hairer E, Nørsett SP and Wanner G (1987). Solving ordinary differential equations I. Nonstiff problems. Springer, Heidelberg

    MATH  Google Scholar 

  10. Hairer E and Wanner G (1996). Solving ordinary differential equations II, 2nd edn. Springer, Heidelberg

    Google Scholar 

  11. Ito K and Xiong K (2000). Gaussian filters for nonlinear filtering problems. IEEE Trans Autom Control 45(5): 910–927

    Article  MATH  MathSciNet  Google Scholar 

  12. Jazwinski AH (1970). Stochastic processes and filtering theory. Academic, New York

    MATH  Google Scholar 

  13. Jensen B and Poulsen R (2002). Transition densities of diffusion processes: numerical comparison of approximation techniques. J Derivatives 9(4): 18–32

    Article  Google Scholar 

  14. Johnston LA and Krishnamurthy V (2001). Derivation of a sawtooth iterated extended kalman smoother via the AECM algorithm. IEEE Trans Signal Process 49(9): 1899–1909

    Article  Google Scholar 

  15. Julier S, Uhlmann J (1997) A new extension of the Kalman filter to nonlinear systems. Paper presented at the 11th international symposium on aerospace/defense sensing, simulation and control, Orlando

  16. Julier S and Uhlmann J (2004). Unscented Kalman filtering and nonlinear estimation. Proc IEEE 92(3): 401–422

    Article  Google Scholar 

  17. Julier S, Uhlmann J and Durrant-White HF (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control 45(3): 477–482

    Article  MATH  Google Scholar 

  18. Kalman RE (1960). A new approach to linear filtering and prediction problems. Trans ASME–J Basic Eng 82(Series D): 35–45

    Google Scholar 

  19. Kloeden PE and Platen E (1992). Numerical solution of stochastic differential equations, 3rd edn. Springer, Heidelberg

    Google Scholar 

  20. La Viola JA (2003) Comparison of unscented and extended Kalman filtering for estimating quaternion motion. In: Proccedings of the 2003 American Control Conference. IEEE Press, New York, pp. 2435–2440

  21. Lefebvre T, Bruyninckx H and de Schutter J (2004). Kalman filters for non-linear systems: a comparison of performance. Int J Control 77(7): 639–653

    Article  MATH  Google Scholar 

  22. Magnus JR and Neudecker H (1988). Matrix differential calculus with applications in statistics and econometrics. Wiley, New York

    MATH  Google Scholar 

  23. Mamon RS (2004). Three ways to solve for bond prices in the Vasicek model. J Appl Math Decis Sci 8(1): 1–14

    Article  MATH  MathSciNet  Google Scholar 

  24. Mazzoni T (2007). Stetig/diskrete Zustandsraummodelle dynamischer Wirtschaftsprozesse. Shaker, Aachen

    Google Scholar 

  25. Nørgaard M, Poulsen NK and Ravn O (2000). New developments in state estimation for nonlinear systems. Automatica 36: 1627–1638

    Article  Google Scholar 

  26. Rosenbrock HH (1963). Some general implicit processes for the numerical solution of differential equations. Comput J 5(4): 329–330

    Article  MATH  MathSciNet  Google Scholar 

  27. Schmidt SF (1966). Application of state-space methods to navigation problems. In: Leondes, CT (eds) Advances in Control Systems. Theory and Applications, vol 3, pp 293–340. Academic, New York

    Google Scholar 

  28. Schweppe F (1965). Evaluation of likelihood functions for Gaussian signals. IEEE Trans Inform Theory 11: 61–70

    Article  MATH  MathSciNet  Google Scholar 

  29. Singer H (2005) Continuous–discrete unscented kalman filtering. Technical Report 384, FernUniversität in Hagen

  30. Singer H (2006) Stochastic differential equation models with sampled data. In: van Montfort K, Oud J, Satorra A (eds) Longitudinal models in the behavioral and related sciences, Chap. 4. Lawrence Erlbaum Associates, London, pp. 73–106

  31. Sitz A, Schwarz U, Kurths J and Voss HU (2002). Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Phys Rev E 66(016210): 1–9

    Google Scholar 

  32. Tanizaki H (1996). Nonlinear filters. Estimation and applications, 2nd edn. Springer, Heidelberg

    Google Scholar 

  33. Vasicek O (1977). An equilibrium characterization of the term structure. J Financ Econ 5: 177–188

    Article  Google Scholar 

  34. Wanner G (1977) On the integration of stiff differential equations. In: Descloux, J (ed) Proceedings of the colloquium on numerical analysis, Lausanne 1976. International series of numerical mathematics, vol 37. BirkhSuser, Basel, pp. 209–226

  35. Wanner G (2003). Dahlquist’s classical papers on stability theory. BIT Numer Math 43(1): 1–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mazzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoni, T. Computational aspects of continuous–discrete extended Kalman-filtering. Comput Stat 23, 519–539 (2008). https://doi.org/10.1007/s00180-007-0094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-007-0094-4

Keywords

Navigation