Skip to main content
Log in

Robust Filtering for Discrete Systems with Unknown Inputs and Jump Parameters

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The paper deals with robust filtering algorithms for discrete systems with unknown inputs (disturbances) and Markovian jump parameter. The proposed filtering algorithm is based on the separation principle, minimization of a quadratic criterion and the use of Kalman filters with unknown input and smoothing procedures. Solving a non-stationary problem is represented solving a two-point boundary value problem in kind of difference matrix equations. In the stationary case problem is represented matrix algebraic equations. Robustness ensures the stability of the filter dynamics when errors occur in identifying the jump parameter. An example is provided to illustrate the proposed approach, which showed that the use of smoothing procedures for estimating an unknown input improves the accuracy of estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Blair, W.P. and Sworder, D.D., Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria, Int. J. Control, 1975, vol. 21, pp. 833–844.

    Article  MathSciNet  Google Scholar 

  2. Cajueiro, D.O., Stochastic optimal control of jumping Markov parameter processes with applications to finance, Ph.D. Thesis, Instituto Tecnologico de Aeronautica-ITA, 2002.

  3. Svensson, L.E.O. and Williams, N., Optimal monetary policy under uncertainty: A Markov jump linear-quadratic approach, Fed. Reserve St. Louis Rev., 2008, vol. 90, pp. 275–293.

    Google Scholar 

  4. Li, L., Ugrinovskii, V.A., and Orsi, R., Decentralized robust control of uncertain Markov jump parameter systems via output feedback, Automatica, 2007, vol. 43, pp. 1932–1944.

    Article  MathSciNet  Google Scholar 

  5. Ugrinovskii, V.A. and Pota, H.R., Decentralized control of power systems via robust control of uncertain Markov jump parameter systems, Int. J. Control, 2005, vol. 78, pp. 662–677.

    Article  MathSciNet  Google Scholar 

  6. Gray, W.S., González, O.R., and Doğan, M., Stability analysis of digital linear flight controllers subject to electromagnetic disturbances, IEEE Aerosp. Electron. Syst. Mag., 2000, vol. 36, pp. 1204–1218.

    Article  Google Scholar 

  7. Costa, O.L.V., Fragoso, M.D., and Todorov, M.G., Continuous-Time Markov Jump Linear Systems, Springer, 2013.

    Book  Google Scholar 

  8. Wonham, W.M., Random differential equation in control theory, in Probabilistic Methods in Applied Mathematics, Bharucha-Reid, A.T., Ed., New York: Academic Press, 1971, pp. 131–213.

    Google Scholar 

  9. Shi, P., Boukas, E.K., and Agarwal, R.K., Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters, IEEE Trans. Autom. Control, 1999, vol. 44, no. 8, pp. 1592–1597.

    Article  MathSciNet  Google Scholar 

  10. Lomakina, S.S. and Smagin, V.I., Robust filtering in continuous systems with random jump parameters, Tomsk State Univ. J., 2003, vol. 280, pp. 201–203.

  11. Lomakina, S.S. and Smagin, V.I., Robust filtering for continuous systems with random jump parameters and degenerate noises in observations, Avtometriya, 2005, vol. 2, pp. 36–43.

    Google Scholar 

  12. Liu, W., State estimation for discrete-time Markov jump linear systems with time-correlated measurement noise, Automatica, 2017, vol. 76, pp. 266–276.

    Article  MathSciNet  Google Scholar 

  13. Costa, E.F. and De Saporta, B., Linear minimum mean square filters for Markov jump linear systems, IEEE Trans. Autom. Control, 2017, vol. 62, no. 7, pp. 3567–3572.

    Article  MathSciNet  Google Scholar 

  14. Gomes, M.J.F. and Costa, E.F., On the stability of the recursive Kalman filter with Markov jump parameters, Proceeding 2010 American Control Conference Marriott Waterfront, Baltimore, 2010, pp. 4159–4163.

  15. Li, F., Shi, P. and Wu, L., Control and Filtering for Semi-Markovian Jump Systems, New York: Springer, 2016.

    MATH  Google Scholar 

  16. Zhao, D., Liu, Y., Liu, M., Yu, J., and Shi, Y., Network-based robust filtering for Markovian jump systems with incomplete transition probabilities, Signal Process., 2018, vol. 150, pp. 90–101.

    Article  Google Scholar 

  17. Terra, M.H., Ishihara, J.Y., Jesus, G., and Cerri, J.P., Robust estimation for discrete-time Markovian jump linear systems, IEEE Trans. Autom. Control, 2013, vol. 58, no. 8, pp. 2065–2071.

    Article  MathSciNet  Google Scholar 

  18. Shi, P., Boukas, E.K., and Agarwal, R.K., Robust Kalman filtering for continuous-time Markovian jump uncertain systems, Proceedings of the American Control Conference, San Diego, 1999, pp. 4413–4417.

  19. Carvalho, L.D.P., De Oliveira, A.M., and Valle Costa, O.L.D., Robust fault detection H∞ filter for Markovian jump linear systems with partial information on the jump parameter, IFAC-PapersOnLine, 2018, vol. 51, no. 25, pp. 202–207.

    Article  Google Scholar 

  20. Janczak, D. and Grishin, Yu., State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming, Control Cybern., 2006, vol. 4, pp. 851–862.

    MathSciNet  MATH  Google Scholar 

  21. Gillijns, S. and Moor, B., Unbiased minimum-variance input and state estimation for linear discrete-time systems, Automatica, 2007, vol. 43, pp. 111–116.

    Article  MathSciNet  Google Scholar 

  22. Hsien, C.S., On the optimality of two-stage Kalman filter for systems with unknown input, Asian J. Control, 2010, vol. 12, no. 4, pp. 510–523.

    MathSciNet  Google Scholar 

  23. Koshkin, G. and Smagin, V., Filtering and prediction for discrete systems with unknown input using nonparametric algorithms, Proceeding 10th International Conference on Digital Technologies, Zilina, 2014, pp. 120–124.

  24. Smagin, V.I., State estimation for nonstationary discrete systems with unknown input using compensations, Russ. Phys. J., 2015, vol. 58, no. 7, pp. 1010–1017.

    Article  Google Scholar 

  25. Smagin, V.I. and Koshkin, G.M., Kalman filtering and forecasting algorithms with use of nonparametric functional estimators, Springer Proc. Math. Stat., 2016, vol. 175, pp. 75–84.

    MathSciNet  MATH  Google Scholar 

  26. Athans, M., The matrix minimum principle, Inf. Control, 1968, vol. 11, pp. 592–606.

    Article  MathSciNet  Google Scholar 

  27. Lancaster, P. and Tismenetsky, M., The Theory of Matrices, San Diego: Academic Press, 1985, 2nd ed.

    MATH  Google Scholar 

Download references

Funding

This work was supported by the RFBR according to the research project no. 19-31-90080.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. S. Kim or V. I. Smagin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.S., Smagin, V.I. Robust Filtering for Discrete Systems with Unknown Inputs and Jump Parameters. Aut. Control Comp. Sci. 54, 1–9 (2020). https://doi.org/10.3103/S014641162001006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S014641162001006X

Keywords:

Navigation