Skip to main content

Advertisement

Log in

Industry application of digital twin: from concept to implementation

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

With the development of artificial intelligence, big data, Internet of Things, and other technologies, digital twin has gained great attention and become a current research topic. Using digital twin technology, the digital twin model can be constructed in the cyber space that is fully equivalent to the physical entity. It is always consistent with the physical entity in the operation process, which greatly improves the dynamic perception and prediction ability of the real world. After the development in recent years, digital twin has gradually changed from the initial concept discussion to the study of model framework and implementation method. However, because the research objects in different industries have great differences in their own composition, service conditions, and application scenarios, they have personalized characteristics in modeling strategies and usage methods. Therefore, based on different industries, this paper reviews the current articles on digital twins and distinguishes the focus of digital twin modeling research; subsequently, the relevant supporting techniques and methods are summarized according to their different importance for digital twin modeling. Based on the review in this paper, future researchers can conduct targeted research on digital twin technology in term of the characteristics of the objects in their industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Grieves MW (2005) Product lifecycle management: the new paradigm for enterprises. Int J Prod Dev 2(1/2):71–84

    Article  Google Scholar 

  2. Grieves M (2007) Product lifecycle management: driving the next generation of lean thinking. J Prod Innov Manage 24:278–280

    Article  Google Scholar 

  3. Grieves M (2011) Virtually perfect: driving innovative and lean products through product lifecycle management. Space Coast Press, Florida

    Google Scholar 

  4. Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen F-J, Flumerfelt S, Alves A (eds) Transdisciplinary perspectives on complex systems: new findings and approaches. Springer International Publishing, Cham, pp 85–113

    Chapter  Google Scholar 

  5. Gockel B, Tudor A, Brandyberry M, Penmetsa R, Tuegel E (2012) Challenges with structural life forecasting using realistic mission profiles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Struct Dyn Mater Confer Honolulu, Hawaii

  6. Penmetsa R, Gockel B, John R (2013) Sensitivity analysis of structural life prediction models in a multiaxial fatigue environment. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structures, Struct Dyn Mater Confer. Honolulu, Hawaii

  7. Tuegel E (2012) The airframe digital twin: some challenges to realization. In. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structures, Struct Dyn Mater Confer, Honolulu, Hawaii

  8. Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and U.S. Air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structures, Struct Dyn Mater Confer. Honolulu, Hawaii

  9. Kritzinger W, Karner M, Traar G, Henjes J, Sihn W (2018) Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11):1016–1022

    Article  Google Scholar 

  10. Lu Y, Liu C, Wang KIK, Huang H, Xu X (2020) Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Rob Comput Integr Manuf 61:101837

    Article  Google Scholar 

  11. Qiu C, Zhou S, Liu Z, Gao Q, Tan J (2019) Digital assembly technology based on augmented reality and digital twins: a review. Virtual Reality & Intelligent Hardware 1(6):597–610

    Article  Google Scholar 

  12. Qi Q, Tao F, Hu T, Anwer N, Liu A, Wei Y, Wang L, Nee AYC (2019) Enabling technologies and tools for digital twin. J Manuf Syst 58:3–21

    Article  Google Scholar 

  13. Boje C, Guerriero A, Kubicki S, Rezgui Y (2020) Towards a semantic construction digital twin: directions for future research. Autom Constr 114:103179

    Article  Google Scholar 

  14. Errandonea I, Beltrán S, Arrizabalaga S (2020) Digital twin for maintenance: a literature review. Comput Ind 123:103316

    Article  Google Scholar 

  15. Jones D, Snider C, Nassehi A, Yon J, Hicks B (2020) Characterising the digital twin: a systematic literature review. CIRP J Manuf Sci Technol 29:36–52

    Article  Google Scholar 

  16. Khan S, Farnsworth M, McWilliam R, Erkoyuncu J (2020) On the requirements of digital twin-driven autonomous maintenance. Annu Rev Control 50:13–28

    Article  Google Scholar 

  17. Phanden RK, Sharma P, Dubey A (2020) A review on simulation in digital twin for aerospace, manufacturing and robotics. Mater Today: Proc 38:174–178

    Google Scholar 

  18. Liu M, Fang S, Dong H, Xu C (2020) Review of digital twin about concepts, technologies, and industrial applications. J Manuf Syst 58:346–361

    Article  Google Scholar 

  19. Lo CK, Chen CH, Zhong RY (2021) A review of digital twin in product design and development. Adv Eng Inf 48:101297

    Article  Google Scholar 

  20. Opoku D-GJ, Perera S, Osei-Kyei R, Rashidi M (2021) Digital twin application in the construction industry: a literature review. J Build Eng 40:102726

    Article  Google Scholar 

  21. Wang M, Wang C, Hnydiuk-Stefan A, Feng S, Atilla I, Li Z (2021) Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions. Ocean Eng 232:109168

    Article  Google Scholar 

  22. Onile AE, Machlev R, Petlenkov E, Levron Y, Belikov J (2021) Uses of the digital twins concept for energy services, intelligent recommendation systems, and demand side management: a review. Energy Rep 7:997–1015

    Article  Google Scholar 

  23. Jiang F, Ma L, Broyd T, Chen K (2021) Digital twin and its implementations in the civil engineering sector. Autom Constr 130:103838

    Article  Google Scholar 

  24. Davila Delgado JM, Oyedele L (2021) Digital twins for the built environment: learning from conceptual and process models in manufacturing. Adv Eng Inf 49:101332

    Article  Google Scholar 

  25. Tuegel EJ, Ingraffea AR, Eason TG, Spottswood SM (2011) Reengineering aircraft structural life prediction using a digital twin. Int J Aerosp Eng 2011:1–15

    Article  Google Scholar 

  26. Yeratapally SR, Leser PE, Hochhalter JD, Leser WP, Ruggles TJ (2020) A digital twin feasibility study (part I): non-deterministic predictions of fatigue life in aluminum alloy 7075–t651 using a microstructure-based multi-scale model. Eng Fract Mech 228:106888

    Article  Google Scholar 

  27. Tao F, Zhang M, Liu Y, Nee AYC (2018) Digital twin driven prognostics and health management for complex equipment. CIRP Ann 67(1):169–172

    Article  Google Scholar 

  28. Tchana Y, Ducellier G, Remy S (2019) Designing a unique digital twin for linear infrastructures lifecycle management. Procedia CIRP 84:545–549

    Article  Google Scholar 

  29. Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital twin in CPS-based production systems. Procedia Manuf 11:939–948

    Article  Google Scholar 

  30. Rabah S, Assila A, Khouri E, Maier F, Ababsa F, bourny V, Maier P, Mérienne F, (2018) Towards improving the future of manufacturing through digital twin and augmented reality technologies. Procedia Manuf 17:460–467

    Article  Google Scholar 

  31. Grieves M (2016) Origins of the digital twin concept. Florida Institute of Technology, Florida

  32. Urbina Coronado PD, Lynn R, Louhichi W, Parto M, Wescoat E, Kurfess T (2018) Part data integration in the shop floor digital twin: mobile and cloud technologies to enable a manufacturing execution system. J Manuf Syst 48:25–33

    Article  Google Scholar 

  33. Lohtander M, Ahonen N, Lanz M, Ratava J, Kaakkunen J (2018) Micro manufacturing unit and the corresponding 3D-model for the digital twin. Procedia Manuf 25:55–61

    Article  Google Scholar 

  34. Ayani M, Ganebäck M, Ng AHC (2018) Digital twin: applying emulation for machine reconditioning. Procedia CIRP 72:243–248

    Article  Google Scholar 

  35. Schluse M, Rossmann J (2016) From simulation to experimentable digital twins: simulation-based development and operation of complex technical systems. In: 2016 IEEE International Symposium on Systems Engineering. IEEE, Edinburgh, pp 1–6

  36. Tao F, Zhang H, Liu A, Nee AYC (2019) Digital twin in industry: state-of-the-art. IEEE Trans Ind Inf 15(4):2405–2415

    Article  Google Scholar 

  37. Bondarenko O, Fukuda T (2020) Development of a diesel engine’s digital twin for predicting propulsion system dynamics. Energy 196:117–126

    Article  Google Scholar 

  38. Grieves M (2014) Digital twin: manufacturing excellence through virtual factory replication

  39. Tao F, Zhang M (2017) Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5:20418–20427

    Article  Google Scholar 

  40. Asher I, Wang L, Khan G, Ling Y, Viana F (2017) Developing a probabilistic load spectrum for fatigue modeling. In: 19th AIAA Non-Deterministic Approaches Conference. AIAA, USA

  41. Li C, Mahadevan S, Ling Y, Choze S, Wang L (2017) Dynamic Bayesian network for aircraft wing health monitoring digital twin. AIAA J 55(3):1–12

    Article  Google Scholar 

  42. Tuegel E, Kobryn P, Zweber J, Kolonay R (2017) Digital thread and twin for systems engineering: design to retirement. In: 55th AIAA Aerospace Sciences Meeting. Grapevine

  43. Millwater H, Ocampo J, Crosby N (2019) Probabilistic methods for risk assessment of airframe digital twin structures. Eng Fract Mech 221:106674

    Article  Google Scholar 

  44. Stark R, Kind S, Neumeyer S (2017) Innovations in digital modelling for next generation manufacturing system design. CIRP Ann 66(1):169–172

    Article  Google Scholar 

  45. Wang X, Wang Y, Tao F, Liu A (2020) New paradigm of data-driven smart customisation through digital twin. J Manuf Syst 58:270–280

    Article  Google Scholar 

  46. Söderberg R, Wärmefjord K, Carlson JS, Lindkvist L (2017) Toward a digital twin for real-time geometry assurance in individualized production. CIRP Ann 66(1):137–140

    Article  Google Scholar 

  47. Zhou Y, Xing T, Song Y, Li Y, Zhu X, Li G, Ding S (2020) Digital-twin-driven geometric optimization of centrifugal impeller with free-form blades for five-axis flank milling. J Manuf Syst 58:22–35

    Article  Google Scholar 

  48. Zhang H, Liu Q, Chen X, Zhang D, Leng J (2017) A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access 5:26901–26911

    Article  Google Scholar 

  49. Leng J, Liu Q, Ye S, Jing J, Wang Y, Zhang C, Zhang D, Chen X (2020) Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Rob Comput Integr Manuf 63:101895

    Article  Google Scholar 

  50. Kunath M, Winkler H (2018) Integrating the digital twin of the manufacturing system into a decision support system for improving the order management process. Procedia CIRP 72:225–231

    Article  Google Scholar 

  51. Malik AA, Bilberg A (2018) Digital twins of human robot collaboration in a production setting. Procedia Manuf 17:278–285

    Article  Google Scholar 

  52. Caputo F, Greco A, Fera M, Macchiaroli R (2019) Digital twins to enhance the integration of ergonomics in the workplace design. Int J Ind Ergon 71:20–31

    Article  Google Scholar 

  53. Franciosa P, Sokolov M, Sinha S, Sun T, Ceglarek D (2020) Deep learning enhanced digital twin for closed-loop in-process quality improvement. CIRP Ann 69(1):369–372

    Article  Google Scholar 

  54. Scaglioni B, Ferretti G (2018) Towards digital twins through object-oriented modelling: a machine tool case study. IFAC-PapersOnLine 51(2):613–618

    Article  Google Scholar 

  55. Zhu Z, Liu C, Xu X (2019) Visualisation of the digital twin data in manufacturing by using augmented reality. Procedia CIRP 81:898–903

    Article  Google Scholar 

  56. Wei Y, Hu T, Zhou T, Ye Y, Luo W (2020) Consistency retention method for CNC machine tool digital twin model. J Manuf Syst 58:313–322

    Article  Google Scholar 

  57. Akintseva AV, Pereverzev PP, Reshetnikov BV, Irshin AV (2020) Analytical basics of digital twin for CNC round grinding process. Mater Today: Proc 38:1740–1744

    Google Scholar 

  58. Luo W, Hu T, Ye Y, Zhang C, Wei Y (2020) A hybrid predictive maintenance approach for CNC machine tool driven by digital twin. Rob Comput Integr Manuf 65:101974

    Article  Google Scholar 

  59. Liu J, Du X, Zhou H, Liu X, ei Li L, Feng F (2019) A digital twin-based approach for dynamic clamping and positioning of the flexible tooling system. Procedia CIRP 80:746–749

    Article  Google Scholar 

  60. Xie Y, Lian K, Liu Q, Zhang C, Liu H (2020) Digital twin for cutting tool: modeling, application and service strategy. J Manuf Syst 58:305–312

    Article  Google Scholar 

  61. Graessler I, Poehler A (2018) Intelligent control of an assembly station by integration of a digital twin for employees into the decentralized control system. Procedia Manuf 24:185–189

    Article  Google Scholar 

  62. Zhang C, Ji W (2019) Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop. Procedia CIRP 83:624–629

    Article  Google Scholar 

  63. Kong T, Hu T, Zhou T, Ye Y (2020) Data construction method for the applications of workshop digital twin system. J Manuf Syst 58(Part B):323–328

  64. Liu Z, Chen W, Zhang C, Yang C, Cheng Q (2020) Intelligent scheduling of a feature-process-machine tool supernetwork based on digital twin workshop. J Manuf Syst 58:157–167

    Article  Google Scholar 

  65. Qi Q, Tao F, Zuo Y, Zhao D (2018) Digital twin service towards smart manufacturing. Procedia CIRP 72:237–242

    Article  Google Scholar 

  66. Zhang M, Tao F, Nee AYC (2020) Digital twin enhanced dynamic job-shop scheduling. J Manuf Syst 58:146–156

    Article  Google Scholar 

  67. Mi S, Feng Y, Zheng H, Wang Y, Gao Y, Tan J (2020) Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework. J Manuf Syst 58:329–345

    Article  Google Scholar 

  68. Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F (2018) Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Technol 94:3563–3576

    Article  Google Scholar 

  69. Macchi M, Roda I, Negri E, Fumagalli L (2018) Exploring the role of digital twin for asset lifecycle management. IFAC-PapersOnLine 51(11):790–795

    Article  Google Scholar 

  70. Schleich B, Dittrich M-A, Clausmeyer T, Damgrave R, Erkoyuncu JA, Haefner B, de Lange J, Plakhotnik D, Scheidel W, Wuest T (2019) Shifting value stream patterns along the product lifecycle with digital twins. Procedia CIRP 86:3–11

    Article  Google Scholar 

  71. Botkina D, Hedlind M, Olsson B, Henser J, Lundholm T (2018) Digital twin of a cutting tool. Procedia CIRP 72:215–218

    Article  Google Scholar 

  72. Uhlemann THJ, Schock C, Lehmann C, Freiberger S, Steinhilper R (2017) The digital twin: demonstrating the potential of real time data acquisition in production systems. Procedia Manuf 9:113–120

    Article  Google Scholar 

  73. Liu C, Le Roux L, Körner C, Tabaste O, Lacan F, Bigot S (2020) Digital twin-enabled collaborative data management for metal additive manufacturing systems. J Manuf Syst 62:857–874

    Article  Google Scholar 

  74. D’Amico D, Ekoyuncu J, Addepalli S, Smith C, Keedwell E, Sibson J, Penver S (2019) Conceptual framework of a digital twin to evaluate the degradation status of complex engineering systems. Procedia CIRP 86:61–67

    Article  Google Scholar 

  75. Min Q, Lu Y, Liu Z, Su C, Wang B (2019) Machine learning based digital twin framework for production optimization in petrochemical industry. Int J Inf Manage 49:502–519

    Article  Google Scholar 

  76. Xia K, Sacco C, Kirkpatrick M, Saidy C, Nguyen L, Kircaliali A, Harik R (2020) A digital twin to train deep reinforcement learning agent for smart manufacturing plants: environment, interfaces and intelligence. J Manuf Syst 58:210–230

    Article  Google Scholar 

  77. Kousi N, Gkournelos C, Aivaliotis S, Giannoulis C, Makris S (2019) Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. Procedia Manufacturing 28:121–126

    Article  Google Scholar 

  78. Negri E, Fumagalli L, Cimino C, Macchi M (2019) FMU-supported simulation for CPS digital twin. Procedia Manuf 28:201–206

    Article  Google Scholar 

  79. Aivaliotis P, Georgoulias K, Arkouli Z, Makris S (2019) Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP 81:417–422

    Article  Google Scholar 

  80. Yi Y, Yan Y, Liu X, Ni Z, Feng J, Liu J (2020) Digital twin-based smart assembly process design and application framework for complex products and its case study. J Manuf Syst 58:94–107

    Article  Google Scholar 

  81. Zhang K, Qu T, Zhou D, Jiang H, Lin Y, Li P, Guo H, Liu Y, Li C, Huang GQ (2020) Digital twin-based opti-state control method for a synchronized production operation system. Rob Comput Integr Manuf 63:101892

    Article  Google Scholar 

  82. Guo H, Chen M, Mohamed K, Qu T, Wang S, Li J (2020) A digital twin-based flexible cellular manufacturing for optimization of air conditioner line. J Manuf Syst 58:65–78

    Article  Google Scholar 

  83. Liu S, Bao J, Lu Y, Li J, Lu S, Sun X (2020) Digital twin modeling method based on biomimicry for machining aerospace components. J Manuf Syst 58:180–195

    Article  Google Scholar 

  84. Dai S, Zhao G, Yu Y, Zheng P, Bao Q, Wang W (2021) Ontology-based information modeling method for digital twin creation of as-fabricated machining parts. Rob Comput Integr Manuf 72:102173

    Article  Google Scholar 

  85. Singh S, Shehab E, Higgins N, Fowler K, Erkoyuncu JA, Gadd P (2021) Towards information management framework for digital twin in aircraft manufacturing. Procedia CIRP 96:163–168

    Article  Google Scholar 

  86. Li C, Mahadevan S, Ling Y, Wang L, Choze S (2017) A dynamic Bayesian network approach for digital twin. In: 19th AIAA Non-Deterministic Approaches Conference. Kissimmee

  87. Guivarch D, Mermoz E, Marino Y, Sartor M (2019) Creation of helicopter dynamic systems digital twin using multibody simulations. CIRP Ann 68(1):133–136

    Article  Google Scholar 

  88. Leser PE, Warner JE, Leser WP, Bomarito GF, Newman JA, Hochhalter JD (2020) A digital twin feasibility study (part II): non-deterministic predictions of fatigue life using in-situ diagnostics and prognostics. Eng Fract Mech 229:106903

    Article  Google Scholar 

  89. Ye Y, Yang Q, Yang F, Huo Y, Meng S (2020) Digital twin for the structural health management of reusable spacecraft: a case study. Eng Fract Mech 234:107076

    Article  Google Scholar 

  90. Wang H, Haynes R, Huang H, Dong L, Atluri SN (2015) The use of high-performance fatigue mechanics and the extended Kalman/particle filters, for diagnostics and prognostics of aircraft structures. CMES-Comp Model Eng Sci 5:1–24

    Google Scholar 

  91. Lu Q, Chen L, Li S, Pitt M (2020) Semi-automatic geometric digital twinning for existing buildings based on images and CAD drawings. Autom Constr 115:103183

    Article  Google Scholar 

  92. Angjeliu G, Coronelli D, Cardani G (2020) Development of the simulation model for digital twin applications in historical masonry buildings: the integration between numerical and experimental reality. Comput Struct 238:106282

    Article  Google Scholar 

  93. Kaewunruen S, Rungskunroch P, Welsh J (2018) A digital-twin evaluation of net zero energy building for existing buildings. Sustainability 11(1):1–22

    Article  Google Scholar 

  94. O’Dwyer E, Pan I, Charlesworth R, Butler S, Shah N (2020) Integration of an energy management tool and digital twin for coordination and control of multi-vector smart energy systems. Sustainable Cities Soc 62:102412

    Article  Google Scholar 

  95. Fan C, Zhang C, Yahja A, Mostafavi A (2021) Disaster city digital twin: a vision for integrating artificial and human intelligence for disaster management. Int J Inf Manage 56:102049

    Article  Google Scholar 

  96. White G, Zink A, Codecá L, Clarke S (2021) A digital twin smart city for citizen feedback. Cities 110:103064

    Article  Google Scholar 

  97. Bartos M, Kerkez B (2021) Pipedream: an interactive digital twin model for natural and urban drainage systems. Environ Modell Software 144:105120

    Article  Google Scholar 

  98. Li X, Liu H, Wang W, Zheng Y, Lv H, Lv Z (2022) Big data analysis of the internet of things in the digital twins of smart city based on deep learning. Future Gener Comput Syst 128:167–177

    Article  Google Scholar 

  99. Qu X, Song Y, Liu D, Cui X, Peng Y (2020) Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model. Microelectron Reliab 114:113857

    Article  Google Scholar 

  100. Li W, Rentemeister M, Badeda J, Jöst D, Schulte D, Sauer DU (2020) Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation. J Storage Mater 30:101557

    Google Scholar 

  101. Meraghni S, Terrissa LS, Yue M, Ma J, Jemei S, Zerhouni N (2020) A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction. Int J Hydrogen Energy 46(2):2555–2564

    Article  Google Scholar 

  102. Dröder K, Bobka P, Germann T, Gabriel F, Dietrich F (2018) A machine learning-enhanced digital twin approach for human-robot-collaboration. Procedia CIRP 76:187–192

    Article  Google Scholar 

  103. Erdős G, Paniti I, Tipary B (2020) Transformation of robotic workcells to digital twins. CIRP Ann 69(1):149–152

    Article  Google Scholar 

  104. Xu W, Cui J, Li L, Yao B, Tian S, Zhou Z (2020) Digital twin-based industrial cloud robotics: Framework, control approach and implementation. J Manuf Syst 58:196–209

    Article  Google Scholar 

  105. Cai Y, Wang Y, Burnett M (2020) Using augmented reality to build digital twin for reconfigurable additive manufacturing system. J Manuf Syst 56:598–604

    Article  Google Scholar 

  106. Coraddu A, Oneto L, Baldi F, Cipollini F, Atlar M, Savio S (2019) Data-driven ship digital twin for estimating the speed loss caused by the marine fouling. Ocean Eng 186:106063

    Article  Google Scholar 

  107. Zohdi TI (2020) A machine-learning framework for rapid adaptive digital-twin based fire-propagation simulation in complex environments. Comput Methods Appl Mech Eng 363:112907

    Article  MathSciNet  MATH  Google Scholar 

  108. Guan J, Li Y, Liu J, Duan X, Shen D, Jia D, Ku C (2021) Experimental and numerical research on the performance characteristics of OPLVCR engine based on the NSGA II algorithm using digital twins. Energy Convers Manage 236:114052

    Article  Google Scholar 

  109. Aversano G, Bellemans A, Li Z, Coussement A, Gicquel O, Parente A (2019) Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications. Comput Chem Eng 121:422–441

    Article  Google Scholar 

  110. Aversano G, Ferrarotti M, Parente A (2020) Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations. Proc Combust Inst 38:5373–5381

    Article  Google Scholar 

  111. Defraeye T, Tagliavini G, Wu W, Prawiranto K, Schudel S, Assefa Kerisima M, Verboven P, Bühlmann A (2019) Digital twins probe into food cooling and biochemical quality changes for reducing losses in refrigerated supply chains. Resour Conserv Recycl 149:778–794

    Article  Google Scholar 

  112. Shoji K, Schudel S, Onwude D, Shrivastava C, Defraeye T (2022) Mapping the postharvest life of imported fruits from packhouse to retail stores using physics-based digital twins. Resour Conserv Recycl 176:105914

    Article  Google Scholar 

  113. Sokolov M, von Stosch M, Narayanan H, Feidl F, Butté A (2021) Hybrid modeling — a key enabler towards realizing digital twins in biopharma? Curr Opin Chem Eng 34:100715

    Article  Google Scholar 

  114. Moi T, Cibicik A, Rølvåg T (2020) Digital twin based condition monitoring of a knuckle boom crane: an experimental study. Eng Fail Anal 112:104517

    Article  Google Scholar 

  115. Mukherjee T, Debroy T (2018) A digital twin for rapid qualification of 3D printed metallic components. Appl Mater Today 14:59–65

    Article  Google Scholar 

  116. Kaewunruen S, Lian Q (2019) Digital twin aided sustainability-based lifecycle management for railway turnout systems. J Cleaner Prod 228:1537–1551

    Article  Google Scholar 

  117. Grégorio J-L, Lartigue C, Thiébaut F, Lebrun R (2020) A digital twin-based approach for the management of geometrical deviations during assembly processes. J Manuf Syst 58:108–117

    Article  Google Scholar 

  118. Yu J, Song Y, Tang D, Dai J (2020) A digital twin approach based on nonparametric bayesian network for complex system health monitoring. J Manuf Syst 58:293–304

    Article  Google Scholar 

  119. Piros A, Trautmann L, Baka E (2020) Error handling method for digital twin-based plasma radiation detection. Fusion Eng Des 156:111592

    Article  Google Scholar 

  120. Quilodrán-Casas C, Silva VLS, Arcucci R, Heaney CE, Guo Y, Pain CC (2021) Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic. Neurocomputing 470:11–28

    Article  Google Scholar 

  121. Viglas SD (2014) Write-limited sorts and joins for persistent memory. Proceedings of the Vldb Endowment 7(5):413–424

    Article  Google Scholar 

  122. Schroeder GN, Steinmetz C, Pereira CE, Espindola DB (2016) Digital twin data modeling with AutomationML and a communication methodology for data exchange. IFAC-PapersOnLine 49(30):12–17

    Article  Google Scholar 

  123. Haag S, Anderl R (2019) Automated generation of as-manufactured geometric representations for digital twins using STEP. Procedia CIRP 84:1082–1087

    Article  Google Scholar 

  124. Platenius-Mohr M, Malakuti S, Grüner S, Schmitt J, Goldschmidt T (2020) File- and API-based interoperability of digital twins by model transformation: an IIoT case study using asset administration shell. Future Gener Comput Syst 113:94–105

    Article  Google Scholar 

  125. Ke S, Xiang F, Zhang Z, Zuo Y (2019) A enhanced interaction framework based on VR, AR and MR in digital twin. Procedia CIRP 83:753–758

    Article  Google Scholar 

  126. Li X, Wang L, Zhu C, Liu Z (2020) Framework for manufacturing-tasks semantic modelling and manufacturing-resource recommendation for digital twin shop-floor. J Manuf Syst 58:281–292

    Article  Google Scholar 

  127. Erkoyuncu JA, del Amo IF, Ariansyah D, Bulka D, Vrabič R, Roy R (2020) A design framework for adaptive digital twins. CIRP Ann 69(1):145–148

    Article  Google Scholar 

  128. Wang M, Feng S, Incecik A, Królczyk G, Li Z (2022) Structural fatigue life prediction considering model uncertainties through a novel digital twin-driven approach. Comput Methods Appl Mech Eng 391:114512

    Article  MathSciNet  MATH  Google Scholar 

  129. Ngandjong AC, Lombardo T, Primo EN, Chouchane M, Shodiev A, Arcelus O, Franco AA (2021) Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: towards a digital twin of Li-ion battery manufacturing. J Power Sources 485:229320

    Article  Google Scholar 

  130. Wiragunarsa IM, Zuhal LR, Dirgantara T, Putra IS (2021) A particle interaction-based crack model using an improved smoothed particle hydrodynamics for fatigue crack growth simulations. Int J Fract 229(2):229–244

    Article  Google Scholar 

  131. Chakraborty S, Adhikari S, Ganguli R (2021) The role of surrogate models in the development of digital twins of dynamic systems. Appl Math Modell 90:662–681

    Article  MathSciNet  MATH  Google Scholar 

  132. Lv L, Deng Z, Li Z, Liu W (2020) Intelligent technology in grinding process driven by data: a review. J Manuf Processes 58:1039–1051

    Article  Google Scholar 

  133. Azcarate S, Ríos-Reina R, Amigo J, Goicoechea H (2021) Data handling in data fusion: methodologies and applications. TrAC, Trends Anal Chem 143:116355

    Article  Google Scholar 

  134. Yavari R, Riensche A, Tekerek E, Jacquemetton L, Halliday H, Vandever M, Tenequer A, Perumal V, Kontsos A, Smoqi Z, Cole K, Rao P (2021) Digitally twinned additive manufacturing: detecting flaws in laser powder bed fusion by combining thermal simulations with in-situ meltpool sensor data. Mater Des 211:110167

    Article  Google Scholar 

  135. Klingaa CG, Mohanty S, Funch CV, Hjermitslev AB, Haahr-Lillevang L, Hattel JH (2021) Towards a digital twin of laser powder bed fusion with a focus on gas flow variables. J Manuf Processes 65:312–327

    Article  Google Scholar 

  136. Kienzlen A, Scheifele C, Verl A (2020) Predicting coupling signals in a material flow real-time co-simulation with a Kalman filter. Procedia CIRP 88:9–14

    Article  Google Scholar 

  137. Fang X, Wang H, Li W, Liu G, Cai B (2022) Fatigue crack growth prediction method for offshore platform based on digital twin. Ocean Eng 244:110320

    Article  Google Scholar 

  138. Yu G, Wang Y, Mao Z, Hu M, Sugumaran V, Wang YK (2021) A digital twin-based decision analysis framework for operation and maintenance of tunnels. Tunnelling Underground Space Technol 116:104125

    Article  Google Scholar 

  139. He B, Cao X, Hua Y (2021) Data fusion-based sustainable digital twin system of intelligent detection robotics. J Cleaner Prod 280:124181

    Article  Google Scholar 

  140. Wang W, Guo H, Li X, Tang S, Xia J, Lv Z (2022) Deep learning for assessment of environmental satisfaction using BIM big data in energy efficient building digital twins. Sustainable Energy Technol Assess 50:101897

    Article  Google Scholar 

  141. Hu L, Nguyen N-T, Tao W, Leu MC, Liu XF, Shahriar MR, Al Sunny SMN (2018) Modeling of cloud-based digital twins for smart manufacturing with mt connect. Procedia Manuf 26:1193–1203

    Article  Google Scholar 

  142. Lin TY, Shi G, Yang C, Zhang Y, Wang J, Jia Z, Guo L, Xiao Y, Wei Z, Lan S (2020) Efficient container virtualization-based digital twin simulation of smart industrial systems. J Cleaner Prod 124443

  143. Huang S, Wang G, Yan Y, Fang X (2020) Blockchain-based data management for digital twin of product. J Manuf Syst 54:361–371

    Article  Google Scholar 

  144. Shen W, Hu T, Zhang C, Ma S (2021) Secure sharing of big digital twin data for smart manufacturing based on blockchain. J Manuf Syst 61:338–350

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Key Research and Development Program of China-Fusion Theory of Cyber-Physical System for Product Life Cycle and Closed Loop Feedback (No. 2020YFB1708003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honghui Wang or Guijie Liu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The publication has been approved by the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Wang, H., Liu, G. et al. Industry application of digital twin: from concept to implementation. Int J Adv Manuf Technol 121, 4289–4312 (2022). https://doi.org/10.1007/s00170-022-09632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09632-z

Keywords

Navigation