Skip to main content
Log in

Recent progress on the application of nanofluids and hybrid nanofluids in machining: a comprehensive review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper summarises the recent progress of nanofluids and hybrid nanofluids in various machining processes including milling, turning, grinding and drilling. Thermophysical properties of nanofluid and hybrid nanofluid, such as viscosity, thermal conductivity, stability and wettability, are also discussed. Results showed that thermal conductivity and viscosity of nanofluid are strongly affected by temperature, mass volume fraction, types of nanoparticles and nanoparticle size. Thermophysical properties of hybrid nanofluids are greater than those of nanofluids and base fluids. Scientific findings also indicated that nanofluids and hybrid nanofluids outperform other cooling-lubrication techniques. The application of nanofluids and hybrid nanofluids enhances the surface finish and reduces the cutting temperature, cutting force and tool wear during machining. However, more research work is still needed to determine their applicability in practical industries, especially in the usage of hybrid nanofluid in milling and drilling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Ogedengbe TS, Okediji AP, Yussouf AA, Aderoba OA, Abiola OA, Alabi IO, Alonge O (2019) The effects of heat generation on cutting tool and machined workpiece. J Phys Conf Ser 1378:10. https://doi.org/10.1088/1742-6596/1378/2/022012

  2. Esfe MH, Bahiraei M, Mir A (2020) Application of conventional and hybrid nanofluids in different machining processes: a critical review. Adv Colloid Interface Sci 282:102199. https://doi.org/10.1016/j.cis.2020.102199

    Article  Google Scholar 

  3. Samanta S, Kumar S, Guha S (2018) Process parameters optimization of CNC turning on Al-6061 using multiple cutting fluids. Int Res J Eng Technol 5:1751–1757

    Google Scholar 

  4. Goindi GS, Sarkar P (2017) Dry machining: a step towards sustainable machining – Challenges and future directions. J Clean Prod 165:1557–1571. https://doi.org/10.1016/j.jclepro.2017.07.235

    Article  Google Scholar 

  5. Jianxin D, Jiantou Z, Hui Z, Pei Y (2011) Wear mechanisms of cemented carbide tools in dry cutting of precipitation hardening semi-austenitic stainless steels. Wear 270:520–527. https://doi.org/10.1016/j.wear.2011.01.006

    Article  Google Scholar 

  6. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: a review. J Clean Prod 83:33–47. https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  7. Gueli M, Ma J, Cococcetta N, Pearl D, Jahan MP (2021) Experimental investigation into tool wear, cutting forces, and resulting surface finish during dry and flood coolant slot milling of Inconel 718. Procedia Manuf 53:236–245. https://doi.org/10.1016/j.promfg.2021.06.026

    Article  Google Scholar 

  8. Razak NH, Rahman MM, Kadirgama K (2017) Cutting force and chip formation in end milling operation when machining nickelbased superalloy, Hastelloy C-2000. J Mech Eng Sci 14:2539–2551. https://doi.org/10.15282/jmes.11.1.2017.12.0233

  9. Najiha MS, Rahman MM (2016) Experimental investigation of flank wear in end milling of aluminum alloy with water-based TiO2 nanofluid lubricant in minimum quantity lubrication technique. Int J Adv Manuf Technol 86:2527–2537. https://doi.org/10.1007/s00170-015-8256-y

    Article  Google Scholar 

  10. Singh RK, Dixit AR, Mandal A, Sharma AK (2017) Emerging application of nanoparticle-enriched cutting fluid in metal removal processes: a review. J Brazilian Soc Mech Sci Eng 39:4677–4717. https://doi.org/10.1007/s40430-017-0839-0

    Article  Google Scholar 

  11. Jagatheesan K, Babu K, Madhesh D (2021) Experimental investigation of machining parameter in MQL turning operation using AISI 4320 alloy steel. Mater Today Proc 46:4331–4335. https://doi.org/10.1016/j.matpr.2021.03.289

    Article  Google Scholar 

  12. Sun H, Zou B, Chen P, Huang C, Guo G, Liu J, Li L, Shi Z (2022) Effect of MQL condition on cutting performance of high-speed machining of GH4099 with ceramic end mills. Tribol Int 167:107401. https://doi.org/10.1016/j.triboint.2021.107401

    Article  Google Scholar 

  13. Lu T, Kudaravalli R, Georgiou G (2018) Cryogenic machining through the spindle and tool for improved machining process performance and sustainability: pt. II, sustainability performance study. Procedia Manuf 21:273–280. https://doi.org/10.1016/j.promfg.2018.02.121

    Article  Google Scholar 

  14. Sivaiah P, Chakradhar D (2018) Effect of cryogenic coolant on turning performance characteristics during machining of 17–4 PH stainless steel: a comparison with MQL, wet, dry machining. CIRP J Manuf Sci Technol 21:86–96. https://doi.org/10.1016/j.cirpj.2018.02.004

    Article  Google Scholar 

  15. Pusavec F, Hamdi H, Kopac J, Jawahir IS (2011) Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. J Mater Process Technol 211:773–783. https://doi.org/10.1016/j.jmatprotec.2010.12.013

    Article  Google Scholar 

  16. Danish M, Gupta MK, Rubaiee S, Ahmed A, Sarıkaya M, Krolczyk GM (2022) Environmental, technological and economical aspects of cryogenic assisted hard machining operation of inconel 718: a step towards green manufacturing. J Clean Prod 337:130483. https://doi.org/10.1016/j.jclepro.2022.130483

    Article  Google Scholar 

  17. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: 1995 International Mechanical Engineering Congress and Exhibition, November, San Francisco, CA, p 196525. https://www.osti.gov/servlets/purl/196525. Accessed 10 Apr 2022

  18. Şirin Ş, Kıvak T (2019) Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy. Tribol Int 137:180–192. https://doi.org/10.1016/j.triboint.2019.04.042

    Article  Google Scholar 

  19. Chakma P, Bhadra D, Dhar NR (2022) Modeling and optimization of the control parameters in machining of aluminum metal matrix nanocomposite under CNT induced nanofluid. Mater Today Proc 54:866–872. https://doi.org/10.1016/j.matpr.2021.11.192

    Article  Google Scholar 

  20. Danish M, Gupta MK, Rubaiee S, Ahmed A, Sarikaya M (2021) Influence of graphene reinforced sunflower oil on thermo-physical, tribological and machining characteristics of inconel 718. J Mater Res Technol 15:135–150. https://doi.org/10.1016/j.jmrt.2021.07.161

    Article  Google Scholar 

  21. Sidik NAC, Adamu IM, Jamil MM, Kefayati GHR, Mamat R, Najafi G (2016) Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass Transf 78:68–79. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.019

    Article  Google Scholar 

  22. Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev 43:164–177. https://doi.org/10.1016/j.rser.2014.11.023

    Article  Google Scholar 

  23. Aslantas K, Danish M, Hasçelik A, Mia M, Gupta M, Ginta T, Ijaz H (2020) Investigations on surface roughness and tool wear characteristics in micro-turning of Ti-6Al-4V alloy. Materials (Basel) 13:2998. https://doi.org/10.3390/ma13132998

    Article  Google Scholar 

  24. Jamil M, Khan AM, Hegab H, Mia M, Gupta MK (2020) Modeling, multi-objective optimization and cost estimation of bone drilling under micro-cooling spray technique: an integrated analysis. Int J Interact Des Manuf 14:435–450. https://doi.org/10.1007/s12008-019-00635-x

    Article  Google Scholar 

  25. Danish M, Ginta TL, Habib K, Carou D, Rani AMA, Saha BB (2017) Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. Int J Adv Manuf Technol 91:2855–2868. https://doi.org/10.1007/s00170-016-9893-5

    Article  Google Scholar 

  26. Sada SO, Ikpeseni SC (2021) Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance. Heliyon 7:e06136. https://doi.org/10.1016/j.heliyon.2021.e06136

    Article  Google Scholar 

  27. Kabil AO, Kaynak Y (2020) Optimization of cutting parameters for sustainable machining of titanium Ti-5553 alloy using genetic algorithm. Acad Platf J Eng Sci 8–2:310–315. https://doi.org/10.21541/apjes.629374

  28. Nouari M, Makich H (2014) On the physics of machining titanium alloys: interactions between cutting parameters, microstructure and tool wear. Metals (Basel) 4:335–358. https://doi.org/10.3390/met4030335

    Article  Google Scholar 

  29. Devillez A, Le Coz G, Dominiak S, Dudzinski D (2011) Dry machining of Inconel 718, workpiece surface integrity. J Mater Process Technol 211:1590–1598. https://doi.org/10.1016/j.jmatprotec.2011.04.011

    Article  Google Scholar 

  30. Joshi S, Pawar P, Tewari A, Joshi SS (2014) Tool wear mechanisms in machining of three titanium alloys with increasing β -phase fraction. Proc Inst Mech Eng Part B J Eng Manuf 228:1090–1103. https://doi.org/10.1177/0954405414522796

    Article  Google Scholar 

  31. Bayraktar Ş, Afyon F (2020) Machinability properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu alloys. J Brazilian Soc Mech Sci Eng 42:1–12. https://doi.org/10.1007/s40430-020-02281-x

    Article  Google Scholar 

  32. Dhanalakshmi S, Rameshbabu T (2020) Comparative study of parametric influence on wet and dry machining of LM 25 aluminium alloy. Mater Today Proc 39:48–53. https://doi.org/10.1016/j.matpr.2020.06.101

    Article  Google Scholar 

  33. Uddin GM, Joyia FM, Ghufran M, Khan SA, Raza MA, Faisal M, Arafat SM, Zubair SWH, Jawad M, Zafar MQ, Irfan M, Waseem B, Chaudhry IA, Zeid I (2021) Comparative performance analysis of cemented carbide, TiN, TiAlN, and PCD coated inserts in dry machining of Al 2024 alloy. Int J Adv Manuf Technol 112:1461–1481. https://doi.org/10.1007/s00170-020-06315-5

    Article  Google Scholar 

  34. Ji M, Xu J, Chen M, Mansori M (2020) Effects of different cooling methods on the specific energy consumption when drilling CFRP/Ti6Al4V stacks. Procedia Manuf 43:95–102. https://doi.org/10.1016/j.promfg.2020.02.118

    Article  Google Scholar 

  35. Khadtare AN, Pawade RS, Joshi S (2020) Surface integrity studies for straight and inclined hole in micro-drilling of thermal barrier coated Inconel 718: a turbine blade application. Precis Eng 66:166–179. https://doi.org/10.1016/j.precisioneng.2020.07.010

    Article  Google Scholar 

  36. Sandeep reddy AV, Ajay kumar S, Jagadesh T (2020) The influence of graphite, MoS2 and blasocut lubricant on hole and chip geometry during peck drilling of aerospace alloy. Mater Today Proc 24:690–697. https://doi.org/10.1016/j.matpr.2020.04.323

    Article  Google Scholar 

  37. Bayraktar Ş, Demir O (2020) Processing of T6 heat-treated Al-12Si-0.6Mg alloy. Mater Manuf Process 35:354–362. https://doi.org/10.1080/10426914.2020.1732412

    Article  Google Scholar 

  38. Shukla A, Kotwani A, Unune DR (2020) Performance comparison of dry, flood and vegetable oil based minimum quantity lubrication environments during CNC milling of aluminium 6061. Mater Today Proc 21:1483–1488. https://doi.org/10.1016/j.matpr.2019.11.060

    Article  Google Scholar 

  39. Yin Z, Hao X, Peng H, Yuan J (2022) A new β-SiAlON ceramic tool prepared by microwave sintering and its cutting performance in high-speed dry machining Inconel718. Int J Adv Manuf Technol 118:3105–3117. https://doi.org/10.1007/s00170-021-08170-4

    Article  Google Scholar 

  40. Leksycki K, Feldshtein E, Lisowicz J, Chudy R, Mrugalski R (2020) Cutting forces and chip shaping when finish turning of 17–4 ph stainless steel under dry, wet, and mql machining conditions. Metals (Basel) 10:1–15. https://doi.org/10.3390/met10091187

    Article  Google Scholar 

  41. Rahman MZ, Das AK, Chattopadhyaya S, Reyaz M, Raza MT, Farzeen S (2020) Regression modeling and comparative analysis on CNC wet-turning of AISI-1055 & AISI-4340 steels. Mater Today Proc 24:841–850. https://doi.org/10.1016/j.matpr.2020.04.393

    Article  Google Scholar 

  42. Dheeraj N, Sanjay S, Kiran Bhargav K, Jagadesh T (2019) Investigations into solid lubricant filled textured tools on hole geometry and surface integrity during drilling of aluminium alloy. Mater Today Proc 26:991–997. https://doi.org/10.1016/j.matpr.2020.01.163

    Article  Google Scholar 

  43. Kaynak Y, Robertson SW, Karaca HE, Jawahir IS (2015) Progressive tool-wear in machining of room-temperature austenitic NiTi alloys: the influence of cooling/lubricating, melting, and heat treatment conditions. J Mater Process Technol 215:95–104. https://doi.org/10.1016/j.jmatprotec.2014.07.015

    Article  Google Scholar 

  44. Yıldırım ÇV (2020) Investigation of hard turning performance of eco-friendly cooling strategies: cryogenic cooling and nanofluid based MQL. Tribol Int 144:106127. https://doi.org/10.1016/j.triboint.2019.106127

    Article  Google Scholar 

  45. Pereira O, Celaya A, Urbikaín G, Rodríguez A, Fernández-Valdivielso A, de Lacalle LN (2020) CO2 cryogenic milling of Inconel 718: cutting forces and tool wear. J Mater Res Technol 9:8459–8468. https://doi.org/10.1016/j.jmrt.2020.05.118

    Article  Google Scholar 

  46. Khanna N, Pusavec F, Agrawal C, Krolczyk GM (2020) Measurement and evaluation of hole attributes for drilling CFRP composites using an indigenously developed cryogenic machining facility. Meas J Int Meas Confed 154:107504. https://doi.org/10.1016/j.measurement.2020.107504

    Article  Google Scholar 

  47. Khanna N, Agrawal C, Gupta MK, Song Q (2020) Tool wear and hole quality evaluation in cryogenic drilling of Inconel 718 superalloy. Tribol Int 143:106084. https://doi.org/10.1016/j.triboint.2019.106084

    Article  Google Scholar 

  48. Koklu U, Coban H (2020) Effect of dipped cryogenic approach on thrust force, temperature, tool wear and chip formation in drilling of AZ31 magnesium alloy. J Mater Res Technol 9:2870–2880. https://doi.org/10.1016/j.jmrt.2020.01.038

    Article  Google Scholar 

  49. Gong L, Bertolini R, Ghiotti A, He N, Bruschi S (2020) Sustainable turning of Inconel 718 nickel alloy using MQL strategy based on graphene nanofluids. Int J Adv Manuf Technol 108:3159–3174. https://doi.org/10.1007/s00170-020-05626-x

    Article  Google Scholar 

  50. Abas M, Sayd L, Akhtar R, Khalid QS, Khan AM, Pruncu CI (2020) Optimization of machining parameters of aluminum alloy 6026–T9 under MQL-assisted turning process. J Mater Res Technol 9:10916–10940. https://doi.org/10.1016/j.jmrt.2020.07.071

    Article  Google Scholar 

  51. Sarikaya M, Güllü A (2015) Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J Clean Prod 91:347–357. https://doi.org/10.1016/j.jclepro.2014.12.020

    Article  Google Scholar 

  52. Kulkarni HB, Nadakatti MM, Kulkarni SC, Kulkarni RM (2019) Investigations on effect of nanofluid based minimum quantity lubrication technique for surface milling of Al7075-T6 aerospace alloy. Mater Today Proc 27:251–256. https://doi.org/10.1016/j.matpr.2019.10.127

    Article  Google Scholar 

  53. Lv D, Xu J, Ding W, Fu Y, Yang C, Su H (2016) Tool wear in milling Ti40 burn-resistant titanium alloy using pneumatic mist jet impinging cooling. J Mater Process Technol 229:641–650. https://doi.org/10.1016/j.jmatprotec.2015.10.020

    Article  Google Scholar 

  54. Garcia U, Ribeiro MV (2016) Ti6Al4V titanium alloy end milling with minimum quantity of fluid technique use. Mater Manuf Process 31:905–918. https://doi.org/10.1080/10426914.2015.1048367

    Article  Google Scholar 

  55. Xu J, Ji M, Paulo Davim J, Chen M, El Mansori M, Krishnaraj V (2020) Comparative study of minimum quantity lubrication and dry drilling of CFRP/titanium stacks using TiAlN and diamond coated drills. Compos Struct 234:111727. https://doi.org/10.1016/j.compstruct.2019.111727

    Article  Google Scholar 

  56. Zhu Z, He B, Chen J (2020) Evaluation of tool temperature distribution in MQL drilling of aluminum 2024–T351. J Manuf Process 56:757–765. https://doi.org/10.1016/j.jmapro.2020.05.029

    Article  Google Scholar 

  57. Awale AS, Vashista M, Khan Yusufzai MZ (2020) Multi-objective optimization of MQL mist parameters for eco-friendly grinding. J Manuf Process 56:75–86. https://doi.org/10.1016/j.jmapro.2020.04.069

    Article  Google Scholar 

  58. Virdi RL, Chatha SS, Singh H (2020) Performance evaluation of inconel 718 under vegetable oils based nanofluids using minimum quantity lubrication grinding. Mater Today Proc 33:1538–1545. https://doi.org/10.1016/j.matpr.2020.03.802

    Article  Google Scholar 

  59. Raja M, Vijayan R, Dineshkumar P, Venkatesan M (2016) Review on nanofluids characterization, heat transfer characteristics and applications. Renew Sustain Energy Rev 64:163–173. https://doi.org/10.1016/j.rser.2016.05.079

    Article  Google Scholar 

  60. Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1–17. https://doi.org/10.1155/2012/435873

    Article  Google Scholar 

  61. Jama M, Singh T, Gamaleldin SM, Koc M, Samara A, Isaifan RJ, Atieh MA (2016) Critical review on nanofluids: preparation, characterization, and applications. J Nanomater 2016:1–22. https://doi.org/10.1155/2016/6717624

    Article  Google Scholar 

  62. Heris SZ, Shokrgozar M, Poorpharhang S, Shanbedi M, Noie SH (2014) Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant. J Dispers Sci Technol 35:677–684. https://doi.org/10.1080/01932691.2013.805301

    Article  Google Scholar 

  63. Behi M, Mirmohammadi SA (2012) Investigation on thermal conductivity, viscosity and stability of nanofluids. Master of Science Thesis EGI-2012, Royal Institute of Technology (KTH), School of Industrial Engineering and Management, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Stockholm, Sweden.

  64. Sidik NA, Jamil MM, Japar WM, Adamu IM (2017) A review on preparation methods, stability and applications of hybrid nanofluids. Renew Sustain Energy Rev 80:1112–1122. https://doi.org/10.1016/j.rser.2017.05.221

    Article  Google Scholar 

  65. He J, Sun J, Meng Y, Yan X (2019) Preliminary investigations on the tribological performance of hexagonal boron nitride nanofluids as lubricant for steel/steel friction pairs. Surf Topogr Metrol Prop 7:015022. https://doi.org/10.1088/2051-672X/ab0afb

    Article  Google Scholar 

  66. Şirin Ş, Kıvak T (2021) Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy. J Manuf Process 70:163–176. https://doi.org/10.1016/j.jmapro.2021.08.038

    Article  Google Scholar 

  67. Babar H, Sajid M, Ali H (2019) Viscosity of hybrid nanofluids: a critical review. Therm Sci 23:1713–1754. https://doi.org/10.2298/tsci181128015b

    Article  Google Scholar 

  68. Dardan E, Afrand M, Isfahani AHM (2016) Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng 109:524–534. https://doi.org/10.1016/j.applthermaleng.2016.08.103

    Article  Google Scholar 

  69. Esfe MH, Rostamian H, Sarlak MR (2018) A novel study on rheological behavior of ZnO-MWCNT/10w40 nanofluid for automotive engines. J Mol Liq 254:406–413. https://doi.org/10.1016/j.molliq.2017.11.135

    Article  Google Scholar 

  70. Soltani O, Akbari M (2016) Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Phys E Low-Dimensional Syst Nanostructures 84:564–570. https://doi.org/10.1016/j.physe.2016.06.015

    Article  Google Scholar 

  71. Ghasemi S, Karimipour A (2018) Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl Therm Eng 128:189–197. https://doi.org/10.1016/j.applthermaleng.2017.09.021

    Article  Google Scholar 

  72. Esfe MH, Afrand M, Rostamian SH, Toghraie D (2017) Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Therm Fluid Sci 80:384–390. https://doi.org/10.1016/j.expthermflusci.2016.07.011

    Article  Google Scholar 

  73. Hu X, Yin D, Chen X, Xiang G (2020) Experimental investigation and mechanism analysis: effect of nanoparticle size on viscosity of nanofluids. J Mol Liq 314:113604. https://doi.org/10.1016/j.molliq.2020.113604

    Article  Google Scholar 

  74. Nithiyanantham U, Zaki A, Grosu Y, González-Fernández L, Anagnostopoulos A, Navarro ME, Ding Y, Igartua JM, Faik A (2022) Effect of silica nanoparticle size on the stability and thermophysical properties of molten salts based nanofluids for thermal energy storage applications at concentrated solar power plants. J Energy Storage 51:104276. https://doi.org/10.1016/j.est.2022.104276

    Article  Google Scholar 

  75. Kazemi I, Sefid M, Afrand M (2020) A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: characterization, stability and viscosity measurements. Powder Technol 366:216–229. https://doi.org/10.1016/j.powtec.2020.02.010

    Article  Google Scholar 

  76. Shahsavar A, Saghafian M, Salimpour MR, Shafii MB (2016) Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf 52:2293–2301. https://doi.org/10.1007/s00231-015-1743-8

    Article  Google Scholar 

  77. Ahammed N, Asirvatham LG, Wongwises S (2016) Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf 103:1084–1097. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.070

    Article  Google Scholar 

  78. Yang L, Xu J, Du K, Zhang X (2017) Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol 317:348–369. https://doi.org/10.1016/j.powtec.2017.04.061

    Article  Google Scholar 

  79. Baby TT, Sundara R (2011) Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C 115:8527–8533. https://doi.org/10.1021/jp200273g

    Article  Google Scholar 

  80. Madhesh D, Parameshwaran R, Kalaiselvam S (2014) Experimental investigation on convective heat transfer and rheological characteristics of Cu-TiO2 hybrid nanofluids. Exp Therm Fluid Sci 52:104–115. https://doi.org/10.1016/j.expthermflusci.2013.08.026

    Article  Google Scholar 

  81. Thakur A, Manna A, Samir S (2020) Multi-response optimization of turning parameters during machining of EN-24 steel with SiC nanofluids based minimum quantity lubrication. SILICON 12:71–85. https://doi.org/10.1007/s12633-019-00102-y

    Article  Google Scholar 

  82. Hamid KA, Azmi WH, Nabil MF, Mamat R (2017) Improved thermal conductivity of TiO2 –SiO2 hybrid nanofluid in ethylene glycol and water mixture. IOP Conf Ser Mater Sci Eng 257:012067. https://doi.org/10.1088/1757-899X/257/1/012067

    Article  Google Scholar 

  83. Sajid MU, Ali HM (2018) Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf 126:211–234. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021

    Article  Google Scholar 

  84. Chereches M, Vardaru A, Huminic G, Chereches EI, Minea AA, Huminic A (2022) Thermal conductivity of stabilized PEG 400 based nanofluids: an experimental approach. Int Commun Heat Mass Transf 130:105798. https://doi.org/10.1016/j.icheatmasstransfer.2021.105798

    Article  Google Scholar 

  85. Nfawa SR, Abu Talib AR, Basri AA, Masuri SU (2021) Novel use of MgO nanoparticle additive for enhancing the thermal conductivity of CuO/water nanofluid. Case Stud Therm Eng 27:101279. https://doi.org/10.1016/j.csite.2021.101279

    Article  Google Scholar 

  86. Loong TT, Salleh H, Khalid A, Koten H (2021) Thermal performance evaluation for different type of metal oxide water based nanofluids. Case Stud Therm Eng 27:101288. https://doi.org/10.1016/j.csite.2021.101288

    Article  Google Scholar 

  87. Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R (2012) Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 55:1529–1535. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.004

    Article  Google Scholar 

  88. Das S, Giri A, Samanta S, Kanagaraj S (2019) Role of graphene nanofluids on heat transfer enhancement in thermosyphon. J Sci Adv Mater Devices 4:163–169. https://doi.org/10.1016/j.jsamd.2019.01.005

    Article  Google Scholar 

  89. Zhu HT, Lin YS, Yin YS (2004) A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci 277:100–103. https://doi.org/10.1016/j.jcis.2004.04.026

    Article  Google Scholar 

  90. Kim HJ, Bang IC, Onoe J (2009) Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt Lasers Eng 47:532–538. https://doi.org/10.1016/j.optlaseng.2008.10.011

    Article  Google Scholar 

  91. Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455:70–74. https://doi.org/10.1016/j.tca.2006.11.036

    Article  Google Scholar 

  92. Suresh S, Venkitaraj KP, Selvakumar P (2011) Synthesis, characterisation of Al2O3-Cu nano composite powder and water based nanofluids. Adv Mater Res 328–330:1560–1567. https://doi.org/10.4028/www.scientific.net/AMR.328-330.1560

    Article  Google Scholar 

  93. Kim HJ, Lee SH, Lee JH, Jang SP (2015) Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy 90:1290–1297. https://doi.org/10.1016/j.energy.2015.06.084

    Article  Google Scholar 

  94. Chakraborty S, Panigrahi PK (2020) Stability of nanofluid: a review. Appl Therm Eng 174:115259. https://doi.org/10.1016/j.applthermaleng.2020.115259

    Article  Google Scholar 

  95. Sharmin I, Gafur MA, Dhar NR (2020) Preparation and evaluation of a stable CNT-water based nano cutting fluid for machining hard-to-cut material. SN Appl Sci 2(4):1–18. https://doi.org/10.1007/s42452-020-2416-x

    Article  Google Scholar 

  96. Xie H, Dang S, Jiang B, Xiang L, Zhou S, Sheng H, Yang T, Pan F (2019) Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Appl Surf Sci 475:847–856. https://doi.org/10.1016/j.apsusc.2019.01.062

    Article  Google Scholar 

  97. Kumar A, Kumar R, Rai A, Kumar A (2017) Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. J Manuf Process 30:467–482. https://doi.org/10.1016/j.jmapro.2017.10.016

    Article  Google Scholar 

  98. Kumar A, Ghosh S, Aravindan S (2019) Experimental investigations on surface grinding of silicon nitride subjected to mono and hybrid nanofluids. Ceram Int 45:17447–17466. https://doi.org/10.1016/j.ceramint.2019.05.307

    Article  Google Scholar 

  99. Rifat M, Rahman MH, Das D (2017) A review on application of nanofluid MQL in machining. In: AIP Conference Proceedings 1919 (1): 020015. AIP Publishing LLC. https://doi.org/10.1063/1.5018533

  100. Amrita M, Srikant R, Sitaramaraju A, Prasad M, Krishna PV (2013) Experimental investigations on influence of mist cooling using nanofluids on machining parameters in turning AISI 1040 steel. Proc Inst Mech Eng Part J J Eng Tribol 227:1334–1346. https://doi.org/10.1177/1350650113491934

    Article  Google Scholar 

  101. Saravanakumar N, Prabu L, Karthik M, Rajamanickam A (2014) Experimental analysis on cutting fluid dispersed with silver nano particles. J Mech Sci Technol 28:645–651. https://doi.org/10.1007/s12206-013-1192-6

    Article  Google Scholar 

  102. Su Y, Gong L, Li B, Liu Z, Chen D (2016) Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. Int J Adv Manuf Technol 83:2083–2089. https://doi.org/10.1007/s00170-015-7730-x

    Article  Google Scholar 

  103. Li G, Yi S, Li N, Pan W, Wen C, Ding S (2019) Quantitative analysis of cooling and lubricating effects of graphene oxide nanofluids in machining titanium alloy Ti6Al4V. J Mater Process Technol 271:584–598. https://doi.org/10.1016/j.jmatprotec.2019.04.035

    Article  Google Scholar 

  104. Singh T, Dureja JS, Dogra M, Bhatti MS (2018) Environment friendly machining of inconel 625 under nano-fluid minimum quantity lubrication (NMQL). Int J Precis Eng Manuf 19:1689–1697. https://doi.org/10.1007/s12541-018-0196-7

    Article  Google Scholar 

  105. Duc TM, Long TT, Chien TQ (2019) Performance evaluation of MQL parameters using Al2O3 and MoS2 nanofluids in hard turning 90CrSi steel. Lubricants 7:40. https://doi.org/10.3390/lubricants7050040

    Article  Google Scholar 

  106. Khan MS, Sisodia MS, Gupta S, Feroskhan M, Kannan S, Krishnasamy K (2019) Measurement of tribological properties of Cu and Ag blended coconut oil nanofluids for metal cutting. Eng Sci Technol an Int J 22:1187–1192. https://doi.org/10.1016/j.jestch.2019.04.005

    Article  Google Scholar 

  107. Yi S, Li J, Zhu J, Wang X, Mo J, Ding S (2020) Investigation of machining Ti-6Al-4V with graphene oxide nanofluids: tool wear, cutting forces and cutting vibration. J Manuf Process 49:35–49. https://doi.org/10.1016/j.jmapro.2019.09.038

    Article  Google Scholar 

  108. Gugulothu S, Pasam VK (2019) Performance evaluation of CNT/MoS2 hybrid nanofluid in machining for surface roughness. Int J Automot Mech Eng 16:7413–7429. https://doi.org/10.15282/ijame.16.4.2019.15.0549

  109. Jamil M, Khan AM, Hegab H, Gong L, Mia M, Gupta MK, He N (2019) Effects of hybrid Al2O3-CNT nanofluids and cryogenic cooling on machining of Ti–6Al–4V. Int J Adv Manuf Technol 102:3895–3909. https://doi.org/10.1007/s00170-019-03485-9

    Article  Google Scholar 

  110. Kumar MS, Krishna VM (2020) An investigation on turning AISI 1018 steel with hybrid biodegradeable nanofluid/MQL incorporated with combinations of CuO-Al2O3 nanoparticles. Mater Today Proc 24:1577–1584. https://doi.org/10.1016/j.matpr.2020.04.478

    Article  Google Scholar 

  111. Kumar MS, Krishna VM, Varun A (2020) Investigation on influence of hybrid biodegradable nanofluids (CuO-ZnO) on surface roughness in turning AISI 1018 steel. Mater Today Proc 24:1570–1576. https://doi.org/10.1016/j.matpr.2020.04.477

    Article  Google Scholar 

  112. Khan AM, Gupta MK, Hegab H, Jamil M, Mia M, He N, Song Q, Liu Z, Pruncu C (2020) Energy-based cost integrated modelling and sustainability assessment of Al-GnP hybrid nanofluid assisted turning of AISI52100 steel. J Clean Prod 257:120502. https://doi.org/10.1016/j.jclepro.2020.120502

    Article  Google Scholar 

  113. Amrita M, Srikant RR, Sitaramaraju AV (2014) Performance evaluation of nanographite-based cutting fluid in machining process. Mater Manuf Process 29:600–605. https://doi.org/10.1080/10426914.2014.893060

    Article  Google Scholar 

  114. Amrita M, Shariq SA, Manoj GC (2014) Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process. Procedia Eng 97:115–124. https://doi.org/10.1016/j.proeng.2014.12.231

    Article  Google Scholar 

  115. Sayuti M, Sarhan AAD, Salem F (2014) Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J Clean Prod 67:265–276. https://doi.org/10.1016/j.jclepro.2013.12.052

    Article  Google Scholar 

  116. Gupta MK, Sood PK, Sharma VS (2016) Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J Clean Prod 135:1276–1288. https://doi.org/10.1016/j.jclepro.2016.06.184

    Article  Google Scholar 

  117. Raju RA, Andhare A, Sahu NK (2017) Performance of multi-walled carbon nanotube-based nanofluid in turning operation. Mater Manuf Process 32:1490–1496. https://doi.org/10.1080/10426914.2017.1279291

    Article  Google Scholar 

  118. Behera BC, Chetan SD, Ghosh S, Rao PV (2017) Spreadability studies of metal working fluids on tool surface and its impact on minimum amount cooling and lubrication turning. J Mater Process Technol 244:1–16. https://doi.org/10.1016/j.jmatprotec.2017.01.016

    Article  Google Scholar 

  119. Mahboob Ali MA, Azmi AI, Mohd Khalil AN, Leong KW (2017) Experimental study on minimal nanolubrication with surfactant in the turning of titanium alloys. Int J Adv Manuf Technol 92:117–127. https://doi.org/10.1007/s00170-017-0133-4

    Article  Google Scholar 

  120. Anamalai K, Samylingam KAL, Samykano KKM, Ramasamy GND (2019) Multi-objective optimization on the machining parameters for bio-inspired nanocoolant. J Therm Anal Calorim 135(2):1533–1544. https://doi.org/10.1007/s10973-018-7693-x

    Article  Google Scholar 

  121. Shuang Y, John M, Songlin D (2019) Experimental investigation on the performance and mechanism of graphene oxide nanofluids in turning Ti-6Al-4V. J Manuf Process 43:164–174. https://doi.org/10.1016/j.jmapro.2019.05.005

    Article  Google Scholar 

  122. Yi S, Li N, Solanki S, Mo J, Ding S (2019) Effects of graphene oxide nanofluids on cutting temperature and force in machining Ti-6Al-4V. Int J Adv Manuf Technol 103:1481–1495. https://doi.org/10.1007/s00170-019-03625-1

    Article  Google Scholar 

  123. Shokoohi Y, Shekarian E (2016) Application of nanofluids in machining processes - a review. J Nanosci Technol 2:59–63. https://www.jacsdirectory.com/journal-of-nanoscience-and-technology/articleview.php?id=15. Accessed 10 Apr 2022

  124. Shokrani A, Dhokia V, Muñoz-Escalona P, Newman ST (2013) State-of-the-art cryogenic machining and processing. Int J Comput Integr Manuf 26:616–648. https://doi.org/10.1080/0951192X.2012.749531

    Article  Google Scholar 

  125. Chatha SS, Pal A, Singh T (2016) Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. J Clean Prod 137:537–545. https://doi.org/10.1016/j.jclepro.2016.07.139

    Article  Google Scholar 

  126. Huang WT, Wu DH, Chen JT (2016) Robust design of using nanofluid/MQL in micro-drilling. Int J Adv Manuf Technol 85:2155–2161. https://doi.org/10.1007/s00170-015-7382-x

    Article  Google Scholar 

  127. Liew PJ, Yahaya MR, Salleh MS, Izamshah R, Wang J (2018) Experimental investigation of drilling process using nanofluid as coolant. J Adv Manuf Technol 12:11–22

    Google Scholar 

  128. Muthuvel S, Naresh Babu M, Muthukrishnan N (2018) Copper nanofluids under minimum quantity lubrication during drilling of AISI 4140 steel. Aust J Mech Eng 00:1–14. https://doi.org/10.1080/14484846.2018.1486694

    Article  Google Scholar 

  129. Babu MN, Muthukrishnan N (2020) Experimental analysis in drilling of AA 5052 using copper nanofluids under minimum quantity lubrication. Aust J Mech Eng 18:S15–S24. https://doi.org/10.1080/14484846.2018.1455267

    Article  Google Scholar 

  130. Khanafer K, Eltaggaz A, Deiab I, Agarwal H, Abdul-latif A (2020) Toward sustainable micro-drilling of Inconel 718 superalloy using MQL-Nanofluid. Int J Adv Manuf Technol 107:3459–3469. https://doi.org/10.1007/s00170-020-05112-4

    Article  Google Scholar 

  131. Nam JS, Kim DH, Chung H, Lee SW (2015) Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm. J Clean Prod 102:428–436. https://doi.org/10.1016/j.jclepro.2015.04.057

    Article  Google Scholar 

  132. Garg A, Sarma S, Panda BN, Zhang J, Gao L (2016) Study of effect of nanofluid concentration on response characteristics of machining process for cleaner production. J Clean Prod 135:476–489. https://doi.org/10.1016/j.jclepro.2016.06.122

    Article  Google Scholar 

  133. Mosleh M, Ghaderi M, Shirvani KA, Belk J, Grzina DJ (2017) Performance of cutting nanofluids in tribological testing and conventional drilling. J Manuf Process 25:70–76. https://doi.org/10.1016/j.jmapro.2016.11.001

    Article  Google Scholar 

  134. Salimi-Yasar H, Heris SZ, Shanbedi M, Amiri A, Kameli A (2017) Experimental investigation of thermal properties of cutting fluid using soluble oil-based TiO2 nanofluid. Powder Technol 310:213–220. https://doi.org/10.1016/j.powtec.2016.12.078

    Article  Google Scholar 

  135. Mosleh M, Shirvani K, Smith S, Belk J, Lipczynski G (2019) A study of minimum quantity lubrication (MQL) by nanofluids in orbital drilling and tribological testing. J Manuf Mater Process 3:5. https://doi.org/10.3390/jmmp3010005

    Article  Google Scholar 

  136. Pal A, Chatha SS, Sidhu HS (2020) Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid. Tribol Int 151:106508. https://doi.org/10.1016/j.triboint.2020.106508

    Article  Google Scholar 

  137. Şirin E, Kıvak T, Yıldırım ÇV (2021) Effects of mono/hybrid nanofluid strategies and surfactants on machining performance in the drilling of Hastelloy X. Tribol Int 157:106894. https://doi.org/10.1016/j.triboint.2021.106894

    Article  Google Scholar 

  138. Sanchez JA, Pombo I, Alberdi R, Izquierdo B, Ortega N, Plaza S, Martinez-Toledano J (2010) Machining evaluation of a hybrid MQL-CO2 grinding technology. J Clean Prod 18:1840–1849. https://doi.org/10.1016/j.jclepro.2010.07.002

    Article  Google Scholar 

  139. Emami M, Sadeghi M, Sarhan A (2013) Minimum quantity lubrication in grinding process of zirconia (ZrO2) engineering ceramic. Int J Mining Metall Mech Eng 1:1–4. http://www.isaet.org/images/extraimages/P513561.pdf. Accessed 10 Apr 2022

  140. Tu HX, Jun G, Hien BT, Hung LX, Tung LA, Pi VN (2018) Determining optimum parameters of cutting fluid in external grinding of 9CrSi steel using Taguchi technique. Int J Mech Eng 5:1–5. https://doi.org/10.14445/23488360/IJME-V5I6P101

  141. Wang S, Li C, Zhang D, Jia D, Zhang Y (2014) Modeling the operation of a common grinding wheel with nanoparticle jet flow minimal quantity lubrication. Int J Adv Manuf Technol 74:835–850. https://doi.org/10.1007/s00170-014-6032-z

    Article  Google Scholar 

  142. Setti D, Sinha MK, Ghosh S, Rao PV (2015) Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tools Manuf 88:237–248. https://doi.org/10.1016/j.ijmachtools.2014.10.005

    Article  Google Scholar 

  143. Li B, Li C, Zhang Y, Wang Y, Jia D, Yang M, Zhang N, Wu Q, Han Z, Sun K (2017) Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J Clean Prod 154:1–11. https://doi.org/10.1016/j.jclepro.2017.03.213

    Article  Google Scholar 

  144. Dambatta YS, Sayuti M, Sarhan AAD, Ab Shukor H, Derahman NA, Manladan SM (2019) Prediction of specific grinding forces and surface roughness in machining of AL6061-T6 alloy using ANFIS technique. Ind Lubr Tribol 71:309–317. https://doi.org/10.1108/ILT-03-2018-0098

    Article  Google Scholar 

  145. Wang Y, Li C, Zhang Y, Yang M, Zhang X, Zhang N, Dai J (2017) Experimental evaluation on tribological performance of the wheel/workpiece interface in minimum quantity lubrication grinding with different concentrations of Al2O3 nanofluids. J Clean Prod 142:3571–3583. https://doi.org/10.1016/j.jclepro.2016.10.110

    Article  Google Scholar 

  146. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int J Mach Tools Manuf 99:19–33. https://doi.org/10.1016/j.ijmachtools.2015.09.003

    Article  Google Scholar 

  147. Zhang X, Li C, Zhang Y, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X (2016) Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. Int J Adv Manuf Technol 86:3427–3441. https://doi.org/10.1007/s00170-016-8453-3

    Article  Google Scholar 

  148. De Oliveira D, Da Silva RB, Gelamo RV (2019) Influence of multilayer graphene platelet concentration dispersed in semi-synthetic oil on the grinding performance of Inconel 718 alloy under various machining conditions. Wear 426–427:1371–1383. https://doi.org/10.1016/j.wear.2019.01.114

    Article  Google Scholar 

  149. de Paiva RL, de Souza RR, de Oliveira LR, Bandarra Filho EP, Gonçalves Neto LM, Gelamo RV, da Silva RB (2020) Experimental study of the influence of graphene platelets on the performance of grinding of SAE 52100 steel. Int J Adv Manuf Technol 110:1–12. https://doi.org/10.1007/s00170-020-05866-x

    Article  Google Scholar 

  150. de Souza RR, de Paiva RL, Gelamo RV, Machado AR, da Silva RB (2021) Study on grinding of inconel 625 and 718 alloys with cutting fluid enriched with multilayer graphene platelets. Wear 476:203697. https://doi.org/10.1016/j.wear.2021.203697

    Article  Google Scholar 

  151. Prabhu S, Vinayagam BK (2013) Analysis of surface characteristics by electrolytic in-process dressing (ELID) technique for grinding process using single wall carbon nano Ttube-based nanofluids. Arab J Sci Eng 38:1169–1178. https://doi.org/10.1007/s13369-012-0355-6

    Article  Google Scholar 

  152. Mao C, Zhang J, Huang Y, Zou H, Huang X, Zhou Z (2013) Investigation on the effect of nanofluid parameters on MQL grinding. Mater Manuf Process 28:436–442. https://doi.org/10.1080/10426914.2013.763970

    Article  Google Scholar 

  153. Jia D, Li C, Zhang D, Zhang Y, Zhang X (2014) Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. J Nanoparticle Res 16:1–15. https://doi.org/10.1007/s11051-014-2758-7

    Article  Google Scholar 

  154. Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z (2014) The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol 71:1221–1228. https://doi.org/10.1007/s00170-013-5576-7

    Article  Google Scholar 

  155. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  156. ManojKumar K, Ghosh A (2015) Synthesis of MWCNT nanofluid and evaluation of its potential besides soluble oil as micro cooling-lubrication medium in SQL grinding. Int J Adv Manuf Technol 77:1955–1964. https://doi.org/10.1007/s00170-014-6587-8

    Article  Google Scholar 

  157. Zhang D, Li C, Zhang Y, Jia D, Zhang X (2015) Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding. Int J Adv Manuf Technol 78:1275–1288. https://doi.org/10.1007/s00170-014-6722-6

    Article  Google Scholar 

  158. Zhang D, Li C, Jia D, Zhang Y, Zhang X (2015) Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding. Chinese J Aeronaut 28:570–581. https://doi.org/10.1016/j.cja.2014.12.035

    Article  Google Scholar 

  159. Prabhu S, Uma M, Vinayagam BK (2015) Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process. Neural Comput Appl 26:41–55. https://doi.org/10.1007/s00521-014-1696-8

    Article  Google Scholar 

  160. Zhang Y, Li C, Jia D, Li B, Wang Y, Yang M, Hou Y, Zhang X (2016) Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. J Mater Process Technol 232:100–115. https://doi.org/10.1016/j.jmatprotec.2016.01.031

    Article  Google Scholar 

  161. Li B, Li C, Zhang Y, Wang Y, Yang M, Jia D, Zhang N, Wu Q (2017) Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy. Int J Adv Manuf Technol 89:3459–3474. https://doi.org/10.1007/s00170-016-9324-7

    Article  Google Scholar 

  162. Wang Y, Li C, Zhang Y, Li B, Yang M, Zhang X, Guo S, Liu G, Zhai M (2017) Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. J Manuf Process 26:94–104. https://doi.org/10.1016/j.jmapro.2017.02.001

    Article  Google Scholar 

  163. Sinha MK, Madarkar R, Ghosh S, Rao PV (2017) Application of eco-friendly nanofluids during grinding of Inconel 718 through small quantity lubrication. J Clean Prod 141:1359–1375. https://doi.org/10.1016/j.jclepro.2016.09.212

    Article  Google Scholar 

  164. Singh H, Sharma VS, Singh S, Dogra M (2019) Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI. J Manuf Process 39:241–249. https://doi.org/10.1016/j.jmapro.2019.02.004

    Article  Google Scholar 

  165. Gao T, Li C, Jia D, Zhang Y, Yang M, Wang X, Cao H, Li R, Ali HM, Xu X (2020) Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication. J Clean Prod 277:123328. https://doi.org/10.1016/j.jclepro.2020.123328

    Article  Google Scholar 

  166. Qu S, Gong Y, Yang Y, Wang W, Liang C, Han B (2020) An investigation of carbon nanofluid minimum quantity lubrication for grinding unidirectional carbon fibre-reinforced ceramic matrix composites. J Clean Prod 249:119353. https://doi.org/10.1016/j.jclepro.2019.119353

    Article  Google Scholar 

  167. Peng R, He X, Tong J, Tang X, Wu Y (2021) Application of a tailored eco-friendly nanofluid in pressurized internal-cooling grinding of Inconel 718. J Clean Prod 278:123498. https://doi.org/10.1016/j.jclepro.2020.123498

    Article  Google Scholar 

  168. Kim JS, Kim JW, Kim YC, Lee SW (2016) Experimental study on environmentally-friendly micro end-milling process of Ti-6Al-4V using nanofluid minimum quantity lubrication with chilly gas. In: International Manufacturing Science and Engineering Conference 49903: V002T05A006. American Society of Mechanical Engineers. https://doi.org/10.1115/MSEC2016-8748

  169. Kim JS, Kim JW, Lee SW (2017) Experimental characterization on micro-end milling of titanium alloy using nanofluid minimum quantity lubrication with chilly gas. Int J Adv Manuf Technol 91:2741–2749. https://doi.org/10.1007/s00170-016-9965-6

    Article  Google Scholar 

  170. Li M, Yu T, Li H, Yang L, Shi J, Wang W (2019) Research on surface integrity in graphene nanofluid MQL milling of TC21 alloy. Int J Abras Technol 9:49–59. https://doi.org/10.1504/IJAT.2019.097973

    Article  Google Scholar 

  171. Sahid NSM, Rahman MM, Kadirgama K, Ramasamy D, Maleque MA, Noor MM (2017) Experimental investigation on the performance of the TiO2 and ZnO hybrid nanocoolant in ethylene glycol mixture towards AA6061-T6 machining. Int J Automot Mech Eng 14:3913–3926. https://doi.org/10.15282/ijame.14.1.2017.8.0318

  172. Jamil M, Khan AM, Hegab H, Gupta MK, Mia M, He N, Zhao G, Song Q, Liu Z (2020) Milling of Ti–6Al–4V under hybrid Al2O3-MWCNT nanofluids considering energy consumption, surface quality, and tool wear: a sustainable machining. Int J Adv Manuf Technol 107:4141–4157. https://doi.org/10.1007/s00170-020-05296-9

    Article  Google Scholar 

  173. Yuan S, Hou X, Wang L, Chen B (2018) Experimental investigation on the compatibility of nanoparticles with vegetable oils for nanofluid minimum quantity lubrication machining. Tribol Lett 66:1–10. https://doi.org/10.1007/s11249-018-1059-1

    Article  Google Scholar 

  174. Sayuti M, Ming O, Sarhan AAD, Hamdi M (2014) Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system. J Clean Prod 66:655–663. https://doi.org/10.1016/j.jclepro.2013.11.058

    Article  Google Scholar 

  175. Sayuti M, Sarhan AAD, Tanaka T, Hamdi M, Saito Y (2013) Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system. Int J Adv Manuf Technol 65:1493–1500. https://doi.org/10.1007/s00170-012-4273-2

    Article  Google Scholar 

  176. Rahmati B, Sarhan AAD, Sayuti M (2014) Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. J Clean Prod 66:685–691. https://doi.org/10.1016/j.jclepro.2013.10.048

    Article  Google Scholar 

  177. Sayuti M, Sarhan AAD, Hamdi M (2013) An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy. Int J Adv Manuf Technol 67:833–849. https://doi.org/10.1007/s00170-012-4527-z

    Article  Google Scholar 

  178. Rahmati B, Sarhan AAD, Sayuti M (2014) Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int J Adv Manuf Technol 70:1143–1155. https://doi.org/10.1007/s00170-013-5334-x

    Article  Google Scholar 

  179. Songmei Y, Xuebo H, Guangyuan Z, Amin M (2017) A novel approach of applying copper nanoparticles in minimum quantity lubrication for milling of Ti-6Al-4V. Adv Prod Eng Manag 12:139–150. https://doi.org/10.14743/apem2017.2.246

  180. Minh DT, The LT, Bao NT (2017) Performance of Al2O3 nanofluids in minimum quantity lubrication in hard milling of 60Si2Mn steel using cemented carbide tools. Adv Mech Eng 9:1687814017710618. https://doi.org/10.1177/1687814017710618

    Article  Google Scholar 

  181. Zhou C, Guo X, Zhang K, Cheng L, Wu Y (2019) The coupling effect of micro-groove textures and nanofluids on cutting performance of uncoated cemented carbide tools in milling Ti-6Al-4V. J Mater Process Technol 271:36–45. https://doi.org/10.1016/j.jmatprotec.2019.03.021

    Article  Google Scholar 

  182. Liew PJ, Maisarah KO, Juoi JM, Wang J (2019) Milling of titanium alloy using hexagonal boron nitride (hBN) nanofluid as a coolant. J Adv Manuf Technol 13:61–71

    Google Scholar 

  183. Dong PQ, Duc TM, Tuan NM, Long TT, Van Thanh D, Van Truong N (2020) Improvement in the hard milling of AISI D2 steel under the MQCL condition using emulsion-dispersed MoS2 nanosheets. Lubricants 8:1–16. https://doi.org/10.3390/LUBRICANTS8060062

    Article  Google Scholar 

  184. Duan Z, Li C, Zhang Y, Dong L, Bai X, Yang M, Jia D, Li R, Cao H, Xuefeng X (2021) Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chinese J Aeronaut 34:33–53. https://doi.org/10.1016/j.cja.2020.04.029

    Article  Google Scholar 

  185. Sen B, Mia M, Mandal UK, Mondal SP (2020) Synergistic effect of silica and pure palm oil on the machining performances of Inconel 690: a study for promoting minimum quantity nano doped-green lubricants. J Clean Prod 258:120755. https://doi.org/10.1016/j.jclepro.2020.120755

    Article  Google Scholar 

  186. Liew PJ, Shaaroni A, Abd Razak J, Kasim MS, Sulaiman MA (2017) Optimization of cutting condition in the turning of AISI D2 steel by using carbon nanofiber nanofluid. Int J Appl Eng Res 12:2243–2252. https://www.ripublication.com/ijaer17/ijaerv12n10_17.pdf. Accessed 10 Apr 2022

  187. Barewar SD, Kotwani A, Chougule SS, Unune DR (2021) Investigating a novel Ag/ZnO based hybrid nanofluid for sustainable machining of inconel 718 under nanofluid based minimum quantity lubrication. J Manuf Process 66:313–324. https://doi.org/10.1016/j.jmapro.2021.04.017

    Article  Google Scholar 

  188. Junankar AA, Parate SR, Dethe PK, Dhote NR, Gadkar DG, Gadkar DD, Gajbhiye SA (2021) Optimization of bearing steel turning parameters under CuO and ZnO nanofluid-MQL using MCDM hybrid approach. Mater Today Proc 47:4292–4297. https://doi.org/10.1016/j.matpr.2021.04.589

    Article  Google Scholar 

  189. Huang WT, Chen JT (2020) Application of intelligent modeling methods to enhance the effectiveness of nanofluid / micro lubrication in microdeep drilling holes machining. J Adv Mech Des Syst Manuf 14: JAMDSM0099. https://doi.org/10.1299/jamdsm.2020jamdsm0099

  190. Chen L, Xie H, Li Y, Yu W (2008) Nanofluids containing carbon nanotubes treated by mechanochemical reaction. Thermochim Acta 477:21–24. https://doi.org/10.1016/j.tca.2008.08.001

    Article  Google Scholar 

  191. Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 8:710–712. https://doi.org/10.1016/j.cap.2007.04.060

    Article  Google Scholar 

  192. Kumar LH, Kazi SN, Masjuki HH, Zubir MNM (2022) A review of recent advances in green nanofluids and their application in thermal systems. Chem Eng J 429:132321. https://doi.org/10.1016/j.cej.2021.132321

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledged the financial and equipment support from Universiti Teknikal Malaysia Melaka (UTeM) through the FRGS grant, FRGS/2018/FKP-AMC/F00376.

Funding

This research was supported by the Ministry of Higher Education (MOHE) through the FRGS grant, FRGS/2018/FKP-AMC/F00376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pay Jun Liew.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kursus, M., Liew, P., Che Sidik, N. et al. Recent progress on the application of nanofluids and hybrid nanofluids in machining: a comprehensive review. Int J Adv Manuf Technol 121, 1455–1481 (2022). https://doi.org/10.1007/s00170-022-09409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09409-4

Keywords

Navigation