Skip to main content
Log in

Determination of thermal material properties for the numerical simulation of cutting processes

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Thermal properties of machined materials, which depend significantly on the change in cutting temperature, have a considerable effect on thermal machining characteristics. Therefore, the thermal properties used for the numerical simulation of the cutting process should be determined depending on the cutting temperature. To determine the thermal properties of the machined materials, a methodology and a software-implemented algorithm were developed for their calculation. This methodology is based on analytical models for the determination of tangential stress in the primary cutting zone. Based on this stress and experimentally or analytically determined cutting temperatures, thermal properties of the machined material were calculated, namely the coefficient of the heat capacity as well as the coefficient of thermal conductivity. Three variants were provided for determining the tangential stress: based on the yield stress calculated using the Johnson-Cook constitutive equation, based on the experimentally determined cutting and thrust forces as well as by directly calculating the tangential stress. The thermal properties were determined using the example of three different materials: AISI 1045 and AISI 4140 steel as well as Ti10V2Fe3Al titanium alloy (Ti-1023). With the developed FE cutting model, the deviation between experimental and simulated temperature values ranged from approx. 7.5 to 14.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets supporting the results of this article are included within the article.

References

  1. Mourtzis D, Doukas M, Bernidaki D (2014) Simulation in manufacturing: review and challenges. Procedia CIRP 25:213–229. https://doi.org/10.1016/j.procir.2014.10.032

    Article  Google Scholar 

  2. Afrasiabi M et al (2021) Smoothed particle hydrodynamics simulation of orthogonal cutting with enhanced thermal modeling. Appl Sci 11:1020. https://doi.org/10.3390/app11031020

    Article  Google Scholar 

  3. Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir I (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62:695–718. https://doi.org/10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  4. Balázs BZ, Geier N, Takács M et al (2021) A review on micro-milling: recent advances and future trends. Int J Adv Manuf Technol 112:655–684. https://doi.org/10.1007/s00170-020-06445-w

    Article  Google Scholar 

  5. Li J, et al (2021) An experimental and finite element investigation of chip separation criteria in metal cutting process. International Journal of Advanced Manufacturing Technology. 10.1007/s00170-021-07461-0.

  6. Grzesik W (2020) Modelling of heat generation and transfer in metal cutting: a short review. J Mach Eng 20(1):24–33. https://doi.org/10.36897/jme/117814

    Article  Google Scholar 

  7. Courbon C et al (2021) A 3D modeling strategy to predict efficiently cutting tool wear in longitudinal turning of AISI 1045 steel. CIRP Ann 70(1):57–60. https://doi.org/10.1016/j.cirp.2021.04.071

    Article  Google Scholar 

  8. Liu Y et al (2021) Investigation on residual stress evolution in nickel-based alloy affected by multiple cutting operations. J Manuf Process 68, Part A:818–833. https://doi.org/10.1016/j.jmapro.2021.06.015

    Article  Google Scholar 

  9. Eivani AR et al (2021) A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/neuro-fuzzy computations and ultrasonic testing. J Magnes Alloys 9(4):1304–1328. https://doi.org/10.1016/j.jma.2020.11.018

    Article  Google Scholar 

  10. Heisel U et al (2009) Thermomechanical material models in the modeling of cutting processes. ZWF Z fuer Wirtsch Fabr 104(6):482–491. (In German). https://doi.org/10.3139/104.110104

    Article  Google Scholar 

  11. Özel T, Zeren EA (2006) A Methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machining. ASME J Manuf Sci Eng 128(1):119–129. https://doi.org/10.1115/1.2118767

    Article  Google Scholar 

  12. Storchak M, Rupp P, Möhring H-C, Stehle T (2019) Determination of Johnson–Cook constitutive parameters for cutting simulations. Metals 9(4):473. https://doi.org/10.3390/met9040473

    Article  Google Scholar 

  13. Melkote SN (2017) et. al.: Advances in material and friction data for modeling of metal machining. CIRP Ann 66(2):731–754. https://doi.org/10.1016/j.cirp.2017.05.002

    Article  Google Scholar 

  14. Heisel U et al (2009) Thermomechanical exchange effects in machining. ZWF Z für Wirtsch Fabr 104(4):263–272. https://doi.org/10.3139/104.110016

    Article  Google Scholar 

  15. Saelzer J et al (2021) Modelling of the friction in the chip formation zone depending on the rake face topography. Wear 477:203802. https://doi.org/10.1016/j.wear.2021.203802

    Article  Google Scholar 

  16. Heisel U et al (2009) Breakage models for the modeling of cutting processes. ZWF 104(5):330–339 (In German). https://doi.org/10.3139/104.110057

    Article  Google Scholar 

  17. Buchkremer S, Schoop J (2016) A mechanics-based predictive model for chip breaking in metal machining and its validation. CIRP Ann 65(1):69–72. https://doi.org/10.1016/j.cirp.2016.04.089

    Article  Google Scholar 

  18. Sela A et al (2021) Inverse identification of the ductile failure law for Ti6Al4V based on orthogonal cutting experimental outcomes. Metals 11:1154. https://doi.org/10.3390/met11081154

    Article  Google Scholar 

  19. Zhang C, Choi H (2021) Study of segmented chip formation in cutting of high-strength lightweight alloys. Int J Adv Manuf Technol 112:2683–2703. https://doi.org/10.1007/s00170-020-06057-4

    Article  Google Scholar 

  20. Zhang J et al (2021) Fragmented chip formation mechanism in high-speed cutting from the perspective of stress wave effect. CIRP Ann 70(1):53–56. https://doi.org/10.1016/j.cirp.2021.03.016

    Article  Google Scholar 

  21. Barzegar Z, Ozlu E (2021) Analytical prediction of cutting tool temperature distribution in orthogonal cutting including third deformation zone. J Manuf Process 67:325–344. https://doi.org/10.1016/j.jmapro.2021.05.003

    Article  Google Scholar 

  22. Storchak M, Kushner V, Möhring H-C, Stehle T (2021) Refinement of temperature determination in cutting zones. J Mech Sci Technol 35(8). https://doi.org/10.1007/s12206-021-0736-4

  23. Osorio-Pinzon JC, Abolghasem S, Casas-Rodriguez JP (2019) Predicting the Johnson-Cook constitutive model constants using temperature rise distribution in plane strain machining. Int J Adv Manuf Technol 105(1-4):279–294. https://doi.org/10.1007/s00170-019-04225-9

    Article  Google Scholar 

  24. Hu C et al (2020) Cutting temperature prediction in negative-rake-angle machining with chamfered insert based on a modified slip filed model. Int J Mech Sci 167:105273. https://doi.org/10.1016/j.ijmecsci.2019.105273

    Article  Google Scholar 

  25. Kumar A, Bhardwaj R, Joshi SS (2020) Thermal modeling of drilling process in titanium alloy (Ti-6Al-4V). Mach Sci Technol 24(3):341–365. https://doi.org/10.1080/10910344.2019.1698607

    Article  Google Scholar 

  26. Tu L et al (2019) Temperature distribution of cubic boron nitride–coated cutting tools by finite element analysis. Int J Adv Manuf Technol 105(7-8):3197–3207. https://doi.org/10.1007/s00170-019-04498-0

    Article  Google Scholar 

  27. Davies MA, Ueda T, M’Saoubi R, Mullany B, Cooke AL (2007) On the measurement of temperature in material removal processes. CIRP Ann 56(2):581–604. https://doi.org/10.1016/j.cirp.2007.10.009

    Article  Google Scholar 

  28. Özel T, Altan T (2000) Determination of workpiece stress and friction at the chip-tool contact for high speed cutting. J Mach Tools Manuf 40:133–152. https://doi.org/10.1016/S0890-6955(99)00051-6

    Article  Google Scholar 

  29. Abukhshim MA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining. Int J Mach Tool Manu 46(7-8):782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  30. Biermann D, Hollmann F (2018) Thermal effects in complex machining processes. Final Report of the DFG Priority Programme 1480. Springer. https://doi.org/10.1007/978-3-319-57120-1

  31. Ebrahimi SM, Araee A, Hadad M (2019) Investigation of the effects of constitutive law on numerical analysis of turning processes to predict the chip morphology, tool temperature, and cutting force. Int J Adv Manuf Technol 105(10):4245–4264. https://doi.org/10.1007/s00170-019-04502-7

    Article  Google Scholar 

  32. Ribeiro-Carvalho S, Horovistiz A, Davim JP (2021) Material model assessment in Ti6Al4V machining simulations with FEM. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p. 095440622199488. https://doi.org/10.1177/0954406221994883

  33. Hu C, Zhuang K, Weng J, Pu D (2019) Three-dimensional analytical modeling of cutting temperature for round insert considering semi-infinite boundary and non-uniform heat partition. Int J Mech Sci 155:536–553. https://doi.org/10.1016/j.ijmecsci.2019.03.019

    Article  Google Scholar 

  34. Chen Y, Li H, Wang J (2015) Further development of Oxley’s predictive force model for orthogonal cutting. Mach Sci Technol 19(1):86–111. https://doi.org/10.1080/10910344.2014.991026

    Article  Google Scholar 

  35. Crichigno Filho JM (2017) Applying extended Oxley’s machining theory and particle swarm optimization to model machining forces. Int J Adv Manuf Technol 89(1-4):1127–1136. https://doi.org/10.1007/s00170-016-9155-6

    Article  Google Scholar 

  36. Huang Y, Liang SY (2003) Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning. Int J Mach Tool Manu 43(3):307–315. https://doi.org/10.1016/S0890-6955(02)00185-2

    Article  Google Scholar 

  37. Kronenberg M (1966) Machining science and application: theory and practice for operation and development of machining processes. Oxford: Pergamon Pr, 410 p

  38. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Published Lim., Cambridge England, 244 p

  39. Craviero H (2016) D. et. al.: Review of the high temperature mechanical and thermal properties of the steel used in cold formed steel structures — the case of the S280 Gd+Z steel. Thin-Walled Struct 98:154–168. https://doi.org/10.1016/j.tws.2015.06.002

    Article  Google Scholar 

  40. Franssen JM, Real PV (2015) Fire design of steel structures. 2nd edn, Wiley Ernst & Sohn, Berlin, 2015, 450 p.

  41. Fang H, Wong WB, Bai Y (2015) Use of kinetic model for thermal properties of steel at high temperatures. Aust J Civ Eng 13(1):40–47. https://doi.org/10.1080/14488353.2015.1092637

    Article  Google Scholar 

  42. Wielgosz E, Kargul T, Falkus J (2014) Comparison of experimental and numerically calculated thermal properties of steels. Conference “Metal 2014”, Brno, Chech Republic, May 2st – 23rd

  43. Choi I-R, Chung K-S, Kim D-H (2014) Thermal and mechanical properties of high-strength structural steel HSA800 at elevated temperatures. Mater Des 63:544–551. https://doi.org/10.1016/j.matdes.2014.06.035

    Article  Google Scholar 

  44. Chen Z, Lu J, Liu H, Liao X (2016) Experimental study on the post-fire mechanical properties of high-strength steel tie rods. J Constr Steel Res 121:311–329. https://doi.org/10.1016/j.jcsr.2016.03.004

    Article  Google Scholar 

  45. Gardner, L. et. al. Elevated temperature material properties of stainless steel reinforced bar. Constr Build Mater, 2016, Vol. 114, pp. 977 – 997. https://doi.org/10.1016/j.conbuildmat.2016.04.009.

  46. Fan, S. et. al. Experimental investigation of austenitic stainless steel material at elevated temperatures. Constr Build Mater, 2017, Vol. 155, pp. 267 – 285. https://doi.org/10.1016/j.conbuildmat.2017.08.047.

  47. Díaz-Álvarez J, Tapetado A, Vázquez C, Miguélez H (2017) Temperature measurement and numerical prediction in machining Inconel 718. Sensors 17(7):1531. https://doi.org/10.3390/s17071531

    Article  Google Scholar 

  48. Michna J (2014) Numerical and experimental investigation of cutting-induced microstructure transformation and modeling of the thermo-mechanical load collective when drilling 42CrMo4. Dissertation, Institute for Technology, Karlsruhe, 196 p

  49. Attanasio A, Umbrello D (2009) Abrasive and diffusive tool wear FEM simulation. Int J Mater Form 2(1):543–546. https://doi.org/10.1007/s12289-009-0475-z

    Article  Google Scholar 

  50. Oxley PLB (1989) Mechanics of Machining. An analytical approach to assessing machinability. Ellis Horwood: Chichester, UK; 242 p. https://doi.org/10.1115/1.2888318

  51. Zorev NN (1966) Metal cutting mechanics. Pergamon Press GmbH: Frankfurt am Main, Germany; 526 p.

  52. Kushner V, Storchak M (2017) Modelling the material resistance to cutting. Int J Mech Sci 126:44–54. https://doi.org/10.1016/j.ijmecsci.2017.03.024

    Article  Google Scholar 

  53. Möhring H-C, Kushner V, Storchak M, Stehle T (2018) Temperature calculation in cutting zones. CIRP Ann 67(1):61–64. https://doi.org/10.1016/j.cirp.2018.03.009

    Article  Google Scholar 

  54. Grzesik W (2006) Determination of temperature distribution in the cutting zone using hybrid analytical-FEM technique. Int. J Mach Tools Manuf 46(6):651–658. https://doi.org/10.1016/j.ijmachtools.2005.07.009

    Article  Google Scholar 

  55. Heisel U, Storchak M, Eberhard P, Gaugele T (2011) Experimental studies for verification of thermal effects in cutting. Prod Eng 5(5):507–515. https://doi.org/10.1007/s11740-011-0312-3

    Article  Google Scholar 

  56. Kushner V, Storchak M (2014) Determining mechanical characteristics of material resistance to deformation in machining. Prod Eng 8(5):679–688. https://doi.org/10.1007/s11740-014-0573-8

    Article  Google Scholar 

  57. Chao BT, Trigger KJ (1958) Temperature distribution at tool-chip and tool-work interface in metal cutting. Trans ASME 80:311–320

    Google Scholar 

  58. Heisel U, Storchak M, Krivoruchko D (2013) Thermal effects in orthogonal cutting. Prod Eng 7(2):203–211. https://doi.org/10.1007/s11740-013-0451-9

    Article  Google Scholar 

  59. Johnson GR, Cook WH A constitutive model and data for metals subjected to large strains, high strain and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983, pp. 541–547

  60. Adibi-Sedeh AH, Madhavan V, Bahr B (2003) Extension of Oxley’s analysis of machining to use different material models. J Manuf Sci Eng 125(4):656–666. https://doi.org/10.1115/1.1617287

    Article  Google Scholar 

  61. Lalwani DI, Mehta NK, Jain PK (2009) Extension of Oxley’s predictive machining theory for Johnson-and Cook flow stress model. J Mater Process Technol 209(12-13):5305–5312. https://doi.org/10.1016/j.jmatprotec.2009.03.020

    Article  Google Scholar 

  62. Xiong L, Wang J, Gan Y, Li B, Fang N (2015) Improvement of algorithm and prediction precision of an extended Oxley’s theoretical model. Int J Adv Manuf Technol 77:1–13. https://doi.org/10.1007/s00170-014-6361-y

    Article  Google Scholar 

  63. Laakso SVA, Niemi E (2016) Modified Johnson-Cook flow stress model with thermal softening damping for finite element modeling of cutting. J Eng Manuf 230(2):241–253. https://doi.org/10.1177/0954405415619873

    Article  Google Scholar 

  64. Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical simulation of serrated formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48(3-4):275–288. https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Article  Google Scholar 

  65. Denguir LA, Outeiro JC, Fromentin G, Vignal V, Besnard R (2016) Orthogonal cutting simulation of OFHC copper using a new constitutive model considering the state of stress and the microstructure effects. Procedia CIRP 46:238–241. https://doi.org/10.1016/j.procir.2016.03.208

    Article  Google Scholar 

  66. Heisel U, Kushner V, Storchak M (2012) Effect of machining conditions on specific tangential forces. Prod Eng 6(6):621–629. https://doi.org/10.1007/s11740-012-0417-3

    Article  Google Scholar 

  67. Barrow G (1973) A review of experimental and theoretical techniques for assessing cutting temperatures. CIRP Ann 22(2):203–211

    Google Scholar 

  68. Burns GW, Scroger MG (1989) The calibration of thermocouples and thermocouple materials. National Institute of Standards and Technology, 201 p.

  69. Kus A, Isik Y, Cakir MC, Coşkun S, Özdemir K (2015) Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting. Sensors 15(1):1274–1291. https://doi.org/10.3390/s150101274

    Article  Google Scholar 

  70. Cui Y, Yang D, Jia Y, Zeng Q, Sun B (2011) Dynamic calibration of the cutting temperature sensor of NiCr/NiSi thin-film thermocouple. Chin J Mech Eng 24(1):73–77. https://doi.org/10.3901/CJME.2011.01.073

    Article  Google Scholar 

  71. Dhar NR, Islam S, Kamruzzaman M, Ahmed T (2005) The calibration of tool-work thermocouple in turning steels. Conference Modeling, Simulation and Control of Engineering Systems, pp. 459–466.

  72. Kaminise AK, Guimarães J, da Silva MB (2014) Development of a tool–work thermocouple calibration system with physical compensation to study the influence of tool-holder material on cutting temperature in machining. Int J Adv Manuf Technol 73(5–8):735–747. https://doi.org/10.1007/s00170-014-5898-0

    Article  Google Scholar 

  73. Nedić BP, Erić MD (2014) Cutting temperature measurement and material machinability. Therm Sci 18(1):259–268. https://doi.org/10.2298/TSCI120719003N

    Article  Google Scholar 

  74. Noriega M, Ramírez R, López R, Vaca M, Morales J, Terres H, Lizardi A, Chávez S (2015, 012029) Thermocouples calibration and analysis of the influence of the length of the sensor coating. J Phys Conf Ser 582:1–6. https://doi.org/10.1088/1742-6596/582/1/012029

    Article  Google Scholar 

  75. Sutter G, Ranc N (2007) Temperature fields in a chip during high-speed orthogonal cutting — an experimental investigation. Int J Mach Tools Manuf 47(10):1507–1517. https://doi.org/10.1016/j.ijmachtools.2006.11.012

    Article  Google Scholar 

  76. Muller B (2001) Temperature measurements with a fibre-optic two-colour pyrometer. In: H. Schulz (Ed.), Scientific Fundamentals of High Speed Cutting, Carl Hanser Verlag, München, pp.: 181–186. https://publications.rwth-aachen.de/record/87014.

  77. Tapetado A et al (2016) Two-color pyrometer for process temperature measurement during machining. J Lightwave Technol 34(4):1380–1386. https://doi.org/10.1109/JLT.2015.2513158

    Article  Google Scholar 

  78. Sutter G et al (2003) An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed. Int J Mach Tools Manuf 43(7):671–678. https://doi.org/10.1016/S0890-6955(03)00037-3

    Article  Google Scholar 

  79. Lis K, Kosmol J (2008) Temperature monitoring of the drilling process using thermovision method. 12th International Research/Expert Conference ”Trends in the Development of Machinery and Associated Technology” TMT 2008, Istanbul, Turkey, 26-30 August, 2008, pp. 113 – 116.

  80. Ranc N, Pina V, Sutter G, Philippon S (2004) Temperature measurement by visible pyrometry: orthogonal cutting application. J Heat Transf Am Soc Mech Eng 126(6):931–936. https://doi.org/10.1115/1.1833361

    Article  Google Scholar 

  81. Soler D, Aristimuño PX, Saez-de-Buruaga M, Arrazola PJ (2019) Determination of emissivity and temperature of tool rake face when cutting AISI 4140. Procedia Manuf 41:304–311. https://doi.org/10.1016/j.promfg.2019.09.013

    Article  Google Scholar 

  82. Storchak M, Jiang L, Xu Y, Li X (2016) FEM modelling for the cutting process of the titanium alloy Ti10V2Fe3Al. Prod Eng 10:509–517. https://doi.org/10.1007/s11740-016-0689-0

    Article  Google Scholar 

  83. Deform-User Manual SFTC-Deform V12.0, Columbus (OH), USA, 2019.

  84. Cockcroft MG, Latham DJ (1968) Ductility and workability of metals. J Inst Met 96:33–39

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for their support, which is highly appreciated.

Code availability

Not applicable.

Funding

This research was supported in part by the German Research Foundation (DFG) HE 1656/153-2 “Development of a Concept for Determining the Mechanical Properties of the Cutting Material in Machining”.

Author information

Authors and Affiliations

Authors

Contributions

Michael Storchak: Conceptualization, Methodology, Formal analysis, Software, Validation, Investigation, Data Curation, Visualization, Writing - Original Draft, Review & Editing.

Thomas Stehle: Funding acquisition, Project administration.

Hans-Christian Möhring: Writing - Review & Editing, Supervision, Project administration

Corresponding author

Correspondence to Michael Storchak.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All of the authors have informed us of their consent to the publication of the paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storchak, M., Stehle, T. & Möhring, HC. Determination of thermal material properties for the numerical simulation of cutting processes. Int J Adv Manuf Technol 118, 1941–1956 (2022). https://doi.org/10.1007/s00170-021-08021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08021-2

Keywords

Navigation