Skip to main content
Log in

Study of segmented chip formation in cutting of high-strength lightweight alloys

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Chip segmentation results in fluctuation of the cutting force, deteriorated tool wear and surface finish, thereby plays an important role in the machining process. Although extensive research has been carried out on studying the segmented chip formation, the mechanism of chip segmentation has remained under debate. This paper aims to investigate the mechanism by combining numerical and experimental methods. Finite element (FE) models of the orthogonal cutting process of A2024–T351 aluminum alloy and Ti6Al4V titanium alloy were developed with three numerical formulations: Lagrangian (LAG), arbitrary Lagrangian–Eulerian (ALE), and coupled Eulerian and Lagrangian (CEL). The appropriate model for predicting the segmented chip formation process was selected by systematic comparison. The mechanism of chip segmentation was thoroughly investigated by the selected numerical model. It revealed that the adiabatic shear band (ASB) is generated not only from the chip root but also from the free chip surface. The finding was then validated by observing the microstructure of chips from high-speed dry-cutting tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Abbreviations

A :

initial yield stress (MPa)

a p :

cutting depth (mm)

B :

hardening modulus (MPa)

C :

strain rate dependency coefficient

D :

damage variable

D 1, initial failure strain: D 2, exponential factor; D 3, triaxiality factor; D 4, strain rate factor; η, stress triaxiality; C p :

specific heat (J·kg−1·C−1)

E :

Young’s modulus (Gpa)

f :

feed rate (mm/rev.)

γ n, rake angle(deg); α n, clearance angle (deg); r n, cutting edge radius (μm); F c :

cutting force (N)

G f :

fracture energy (N/mm)

I :

tensile failure mode

II :

sliding (or shearing) failure mode

K c :

fracture toughness (MPa·m1/2)

m :

thermal softening coefficient

n :

work-hardening exponent

t c :

cutting time (μs)

λ :

thermal conductivity (W·m−1·C−1)

ρ :

density (kg/m3)

T m :

melting temperature (°C)

T 0 :

reference temperature (°C)

T :

instantaneous temperature (°C)

v c :

cutting speed (m/min)

\( {\overline{u}}_{\mathrm{f}} \) :

equivalent plastic displacement at failure (mm)

\( \overline{u} \) :

equivalent plastic displacement (mm)

\( \overline{\varepsilon} \) :

equivalent plastic strain

\( \dot{\overline{\varepsilon}} \) :

equivalent plastic strain rate (s−1)

\( {\dot{\varepsilon}}_0 \) :

reference strain rate (s−1)

\( {\overline{\varepsilon}}_{\mathrm{f}}^{\mathrm{pl}} \) :

equivalent plastic strain at failure

\( \Delta {\overline{\varepsilon}}^{\mathrm{pl}} \) :

increment of equivalent plastic strain

\( {\overline{\varepsilon}}_0^{\mathrm{pl}} \) :

equivalent plastic strain at damage initiation

\( \overline{\sigma} \) :

von Mises plastic equivalent stress (MPa)

σ y :

yield stress (MPa)

ω :

damage initiation criterion

ν :

Poisson’s ratio

τ f :

frictional shear stress (MPa)

τ max :

maximum shear stress while it relates to the normal stress (MPa)

σ n, normal stress (MPa); μ, coefficient of friction; r pl :

heat flux per unit volume due to plastic straining

κ :

inelastic heat fraction Taylor–Quinney coefficient

\( \dot{Q} \) :

rate of frictional energy dissipation

η h :

fraction of dissipated energy converted into heat

τ :

frictional stress (MPa)

\( \dot{\gamma} \) :

slip rate

f w :

weighting factor for the heat between the interacting surfaces

References

  1. Komanduri R, Brown RH (1981) On the mechanics of chip segmentation in machining. J Eng Ind 103:33–51. https://doi.org/10.1115/1.3184458

    Article  Google Scholar 

  2. Moon KS, Sutherland JW (1994) The origin and interpretation of spatial frequencies in a turned surface profile. J Eng Ind 116:340–347. https://doi.org/10.1115/1.2901950

    Article  Google Scholar 

  3. Davies MA, Chou Y, Evans CJ (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. CIRP Ann 45:77–82. https://doi.org/10.1016/S0007-8506(07)63020-0

    Article  Google Scholar 

  4. da Silva RB, Machado ÁR, Ezugwu EO et al (2013) Tool life and wear mechanisms in high speed machining of Ti–6Al–4 V alloy with PCD tools under various coolant pressures. J Mater Process Technol 213:1459–1464. https://doi.org/10.1016/j.jmatprotec.2013.03.008

    Article  Google Scholar 

  5. Sun S, Brandt M, Dargusch MS (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568. https://doi.org/10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  6. Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150:124–133. https://doi.org/10.1016/j.jmatprotec.2004.01.028

    Article  Google Scholar 

  7. Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121:163–172. https://doi.org/10.1115/1.2831200

    Article  Google Scholar 

  8. Barry J, Byrne G (2002) The mechanisms of chip formation in machining hardened steels. J Manuf Sci Eng 124:528–535. https://doi.org/10.1115/1.1455643

    Article  Google Scholar 

  9. Cotterell M, Byrne G (2008) Dynamics of chip formation during orthogonal cutting of titanium alloy Ti–6Al–4 V. CIRP Ann 57:93–96. https://doi.org/10.1016/j.cirp.2008.03.007

    Article  Google Scholar 

  10. Davoodi B, Hosseinzadeh H (2012) A new method for heat measurement during high speed machining. Measurement 45:2135–2140. https://doi.org/10.1016/j.measurement.2012.05.020

    Article  Google Scholar 

  11. Calamaz M, Coupard D, Girot F (2010) Numerical simulation of titanium alloy dry machining with a strain softening constitutive law. Mach Sci Technol 14:244–257. https://doi.org/10.1080/10910344.2010.500957

    Article  Google Scholar 

  12. Komanduri R, Hou Z-B (2002) On thermoplastic shear instability in the machining of a titanium alloy (Ti-6Al-4V). Metall Mater Trans A 33:2995–3010. https://doi.org/10.1007/s11661-002-0284-1

    Article  Google Scholar 

  13. Recht RF (1964) Catastrophic thermoplastic shear. J Appl Mech 31:189–193. https://doi.org/10.1115/1.3629585

    Article  Google Scholar 

  14. Shaw MC, Dirke SO, Smith PA et al (1954) Machining titanium: a report prepared for the United States Air Force. MA, Cambridge

    Google Scholar 

  15. Nakayama K, Arai M, Kanda T (1988) Machining characteristics of hard materials. CIRP Ann 37:89–92. https://doi.org/10.1016/S0007-8506(07)61592-3

    Article  Google Scholar 

  16. Elbestawi MA, Srivastava AK, El-Wardany TI (1996) A model for chip formation during machining of hardened steel. CIRP Ann 45:71–76. https://doi.org/10.1016/S0007-8506(07)63019-4

    Article  Google Scholar 

  17. Calamaz M, Coupard D, FG Ã (2008) A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti – 6Al – 4 V, vol 48, pp 275–288. https://doi.org/10.1016/j.ijmachtools.2007.10.014

    Book  Google Scholar 

  18. Ducobu F, Rivière-Lorphèvre E, Filippi E (2014) Numerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cutting. Int J Mech Sci 81:77–87. https://doi.org/10.1016/j.ijmecsci.2014.02.017

    Article  Google Scholar 

  19. Bejjani R, Balazinski M, Attia H et al (2016) Chip formation and microstructure evolution in the adiabatic shear band when machining titanium metal matrix composites. Int J Mach Tools Manuf 109:137–146. https://doi.org/10.1016/j.ijmachtools.2016.08.001

    Article  Google Scholar 

  20. Shunmugavel M, Goldberg M, Polishetty A, et al (2017) Chip formation characteristics of selective laser melted Ti–6Al–4 V. Aust J Mech Eng 118. https://doi.org/10.1080/14484846.2017.1364833

  21. Liyao G, Minjie W, Chunzheng D (2013) On adiabatic shear localized fracture during serrated chip evolution in high speed machining of hardened AISI 1045 steel. Int J Mech Sci 75:288–298. https://doi.org/10.1016/j.ijmecsci.2013.07.004

    Article  Google Scholar 

  22. Tang L, Yin J, Sun Y et al (2017) Chip formation mechanism in dry hard high-speed orthogonal turning of hardened AISI D2 tool steel with different hardness levels. Int J Adv Manuf Technol 93:2341–2356. https://doi.org/10.1007/s00170-017-0667-5

    Article  Google Scholar 

  23. Jomaa W, Mechri O, Lévesque J et al (2017) Finite element simulation and analysis of serrated chip formation during high–speed machining of AA7075–T651 alloy. J Manuf Process 26:446–458. https://doi.org/10.1016/j.jmapro.2017.02.015

    Article  Google Scholar 

  24. Zhang YC, Mabrouki T, Nelias D, Gong YD (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47:850–863. https://doi.org/10.1016/j.finel.2011.02.016

    Article  Google Scholar 

  25. Xi Y, Bermingham M, Wang G, Dargusch M (2013) Finite element modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy. J Manuf Sci Eng 135:061014. https://doi.org/10.1115/1.4025740

    Article  Google Scholar 

  26. Li K, Gao X-L, Sutherland JW (2002) Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process. J Mater Process Technol 127:309–324. https://doi.org/10.1016/S0924-0136(02)00281-9

    Article  Google Scholar 

  27. Subbiah S, Melkote SN (2007) Evidence of ductile tearing ahead of the cutting tool and modeling the energy consumed in material separation in micro-cutting. J Eng Mater Technol 129:321–331. https://doi.org/10.1115/1.2712471

    Article  Google Scholar 

  28. Mabrouki T, Rigal J-F (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176:214–221. https://doi.org/10.1016/j.jmatprotec.2006.03.159

    Article  Google Scholar 

  29. Strenkowski JS, Moon K-J (1990) Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting. J Eng Ind 112:313–318. https://doi.org/10.1115/1.2899593

    Article  Google Scholar 

  30. Carroll JT, Strenkowski JS (1988) Finite element models of orthogonal cutting with application to single point diamond turning. Int J Mech Sci 30:899–920. https://doi.org/10.1016/0020-7403(88)90073-2

    Article  Google Scholar 

  31. Strenkowski JS, Athavale SM (1997) A partially constrained Eulerian orthogonal cutting model for chip control tools. J Manuf Sci Eng 119:681–688. https://doi.org/10.1115/1.2836809

    Article  Google Scholar 

  32. Margolin LG (2010) Arbitrary Lagrangian-Eulerian (ALE) methods. A personal perspective, pp 1–27

    Google Scholar 

  33. Donea J, Huerta A, Ponthot J-P, Rodríguez-Ferran A (2004) Arbitrary Lagrangian-Eulerian methods. In: Encyclopedia of computational mechanics. John Wiley & Sons, Ltd, Chichester, pp 1–25

    Google Scholar 

  34. Özel T, Zeren E (2007) Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. Int J Adv Manuf Technol 35:255–267. https://doi.org/10.1007/s00170-006-0720-2

    Article  Google Scholar 

  35. Arrazola PJ, Villar A, Ugarte D, Marya S (2007) Serrated chip prediction in finite element modeling of the chip formation process. Mach Sci Technol 11:367–390. https://doi.org/10.1080/10910340701539882

    Article  Google Scholar 

  36. Haglund AJ, Kishawy HA, Rogers RJ (2008) An exploration of friction models for the chip-tool interface using an arbitrary Lagrangian-Eulerian finite element model. Wear 265:452–460. https://doi.org/10.1016/j.wear.2007.11.025

    Article  Google Scholar 

  37. Hairudin WMB, Awang MB (2011) Thermo mechanical modeling of turning process using an arbitrary Lagrangian-Eulerian method. In: 2011 National Postgraduate Conference. IEEE, Kuala Lumpur, pp 1–6

    Google Scholar 

  38. Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155–156:1350–1356. https://doi.org/10.1016/j.jmatprotec.2004.04.210

    Article  Google Scholar 

  39. Puls H, Klocke F, Lung D (2014) Experimental investigation on friction under metal cutting conditions. Wear 310:63–71. https://doi.org/10.1016/j.wear.2013.12.020

    Article  Google Scholar 

  40. Ducobu F, Rivière-Lorphèvre E, Filippi E (2017) On the importance of the choice of the parameters of the Johnson-Cook constitutive model and their influence on the results of a Ti6Al4V orthogonal cutting model. Int J Mech Sci 122:143–155. https://doi.org/10.1016/j.ijmecsci.2017.01.004

    Article  MATH  Google Scholar 

  41. Shuang F, Chen X, Ma W (2018) Numerical analysis of chip formation mechanisms in orthogonal cutting of Ti6Al4V alloy based on a CEL model. Int J Mater Form 11:185–198. https://doi.org/10.1007/s12289-017-1341-z

    Article  Google Scholar 

  42. Liu Y, Agmell M, Xu D, et al (2020) Numerical contribution to segmented chip effect on residual stress distribution in orthogonal cutting of Inconel718. Int J Adv Manuf Technol 109:993–1005. https://doi.org/10.1007/s00170-020-05702-2

  43. Zhang Y, Outeiro JCC, Mabrouki T (2015) On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP 31:112–117. https://doi.org/10.1016/j.procir.2015.03.052

    Article  Google Scholar 

  44. Melkote SN, Grzesik W, Outeiro J et al (2017) Advances in material and friction data for modelling of metal machining. CIRP Ann 66:731–754. https://doi.org/10.1016/j.cirp.2017.05.002

    Article  Google Scholar 

  45. Johnson GR, Cook WH, G.R. Johnson WHC (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics. The Hague, pp 541–547

  46. Nasr MNA, Ammar MMA (2017) An evaluation of different damage models when simulating the cutting process using FEM. Procedia CIRP 58:134–139. https://doi.org/10.1016/j.procir.2017.03.202

    Article  Google Scholar 

  47. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  48. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781. https://doi.org/10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  49. Öpöz TT, Chen X (2016) Chip formation mechanism using finite element simulation. Strojniški Vestn - J Mech Eng 62:636–646. https://doi.org/10.5545/sv-jme.2016.3523

    Article  Google Scholar 

  50. Mabrouki T, Girardin F, Asad M, Rigal J-F (2008) Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351). Int J Mach Tools Manuf 48:1187–1197. https://doi.org/10.1016/j.ijmachtools.2008.03.013

    Article  Google Scholar 

  51. Abaqus Inc (2014) Analysis user’s guide, Version 6. USA

    Google Scholar 

  52. Zorev NN (1963) Interrelationship between shear processes occurring along tool face and on shear plane in metal cutting. Roceedings Int Res Prod Eng Conf:42–49

  53. Abaqus Inc (2014) ABAQUS theory guide

    Google Scholar 

  54. Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc A 143:307–326. https://doi.org/10.1098/rspa.1934.0004

    Article  Google Scholar 

  55. Iqbal SA, Mativenga PT, Sheikh MA (2008) An investigative study of the interface heat transfer coefficient for finite element modelling of high-speed machining. Proc Inst Mech Eng Part B J Eng Manuf 222:1405–1416. https://doi.org/10.1243/09544054JEM1179

    Article  Google Scholar 

  56. Ozel T (2007) Numerical modelling of meso-scale finish machining with finite edge radius tools. Int J Mach Mach Mater 2:451–468. https://doi.org/10.1504/IJMMM.2007.015476

    Article  Google Scholar 

  57. Ozel T, Llanos I, Soriano J, Arrazola P-J (2011) 3D finite element modelling of chip formation process for machining Inconel 718: comparison of Fe Software predictions. Mach Sci Technol 15:21–46. https://doi.org/10.1080/10910344.2011.557950

    Article  Google Scholar 

  58. Arrazola PJ, Özel T (2008) Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method. Mech Eng 3:238–249. https://doi.org/10.1504/IJMMM.2008.020907

    Article  Google Scholar 

  59. Atkins AGG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45:373–396. https://doi.org/10.1016/S0020-7403(03)00040-7

    Article  Google Scholar 

  60. Vaziri MR, Salimi M, Mashayekhi M (2011) Evaluation of chip formation simulation models for material separation in the presence of damage models. Simul Model Pract Theory 19:718–733. https://doi.org/10.1016/j.simpat.2010.09.006

  61. Asad M, Mabrouki T (2013) On the modelling of an aluminium alloy milling : 3D FEM approach, vol 19, pp 588–592

    Google Scholar 

  62. Long Y, Guo C (2012) Finite element modeling of burr formation in orthogonal cutting. Mach Sci Technol 16:321–336. https://doi.org/10.1080/10910344.2011.600203

    Article  Google Scholar 

  63. Assadi H, Gärtner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394. https://doi.org/10.1016/S1359-6454(03)00274-X

    Article  Google Scholar 

  64. Ducobu F, Rivière-Lorphèvre E, Filippi E (2017) Mesh influence in orthogonal cutting modelling with the coupled Eulerian-Lagrangian (CEL) method. Eur J Mech - A/Solids 65:324–335. https://doi.org/10.1016/j.euromechsol.2017.05.007

    Article  MathSciNet  MATH  Google Scholar 

  65. Chen G, Ren C, Yang X et al (2011) Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. Int J Adv Manuf Technol 56:1027–1038. https://doi.org/10.1007/s00170-011-3233-6

    Article  Google Scholar 

  66. Teng X, Wierzbicki T, Couque H (2007) On the transition from adiabatic shear banding to fracture. Mech Mater 39:107–125. https://doi.org/10.1016/j.mechmat.2006.03.001

    Article  Google Scholar 

  67. Ranc N, Taravella L, Pina V, Herve P (2008) Temperature field measurement in titanium alloy during high strain rate loading—adiabatic shear bands phenomenon. Mech Mater 40:255–270. https://doi.org/10.1016/j.mechmat.2007.08.002

    Article  Google Scholar 

  68. Teng X, Wierzbicki T (2004) Effect of fracture criteria on high velocity perforation of thin beams. Int J Comput Methods 01:171–200. https://doi.org/10.1142/S0219876204000058

    Article  MATH  Google Scholar 

  69. Lindholm US, Johnson GR (1983) Strain-rate effects in metals at large shear strains. In: Mescall J, Weiss V (eds) Material behavior under high stress and ultrahigh loading rates. Springer US, Boston, MA, pp 61–79

    Chapter  Google Scholar 

  70. Matweb A2024-T351. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum = ma2024t4

  71. Lesuer D (1999) Experimental investigation of material models for Ti-6Al-4V and 2024-T3. Livermore, CA

    Book  Google Scholar 

  72. Asad M, Girardin F, Mabrouki T, Rigal J-F (2008) Dry cutting study of an aluminium alloy (A2024-T351): a numerical and experimental approach. Int J Mater Form 1:499–502. https://doi.org/10.1007/s12289-008-0150-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sandvik for providing the tool inserts and Richard Overstreet for helping with the machining test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongseok Choi.

Ethics declarations

Conflict of interest

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Choi, H. Study of segmented chip formation in cutting of high-strength lightweight alloys. Int J Adv Manuf Technol 112, 2683–2703 (2021). https://doi.org/10.1007/s00170-020-06057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06057-4

Keywords

Navigation