Skip to main content
Log in

Tool condition monitoring in the milling process based on multisource pattern recognition model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the milling process of metallic parts, appropriate tool conditions are essential to reducing processing faults and ensuring manufacturing quality. However, the existing condition monitoring methods are usually limited by recognizing intermediate abnormal states during milling processing, which is inefficient and impractical for real practical applications. Therefore, this paper proposes a tool condition monitoring (TCM) method in the milling process based on multisource pattern recognition and state transfer paths. First, the improved K-means clustering method is used to generate multiple patterns of tool wear. Second, a multisource pattern recognition model framework is developed, and multiple observation windows and the pattern transfer path are considered in the multisource pattern recognition model. Finally, PHM2010 datasets are used to verify the feasibility of the proposed method, and the results demonstrate the applicability of the proposed method in practice for tool condition monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets during the current study are available in the “PHM Data Challenge 2010” database (https://www.Phmsociety.org/competition/phm/10S).

References

  1. Sunhare P, Chowdhary RR, Chattopadhyay MK (2020) Internet of things and data mining: an application oriented survey. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2020.07.002

  2. Li K, Zhou T, Liu B (2020) Internet-based intelligent and sustainable manufacturing: developments and challenges. Int J Adv Manuf Technol 108(5-6):1767–1791. https://doi.org/10.1007/s00170-020-05445-0

    Article  Google Scholar 

  3. Hu H, Wang L, Luh P (2015) Intelligent manufacturing: new advances and challenges. J Intell Manuf 26(5):841–843. https://doi.org/10.1007/s10845-015-1148-z

    Article  Google Scholar 

  4. Chelladurai H, Jain VK, Vyas NS (2008) Development of a cutting tool condition monitoring system for high speed turning operation by vibration and strain analysis. Int J Adv Manuf Technol 37(5-6):471–485. https://doi.org/10.1007/s00170-007-0986-z

    Article  Google Scholar 

  5. Javed K, Gouriveau R, Li X, Zerhouni N (2018) Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model. J Intell Manuf 29(8):1873–1890. https://doi.org/10.1007/s10845-016-1221-2

    Article  Google Scholar 

  6. Guo J, Li A, Zhang R (2020) Tool condition monitoring in milling process using multifractal detrended fluctuation analysis and support vector machine. Int J Adv Manuf Technol 110(5-6):1445–1456. https://doi.org/10.1007/s00170-020-05931-5

    Article  Google Scholar 

  7. Xia T, Dong Y, Xiao L, Du S, Pan E, Xi L (2018) Recent advances in prognostics and health management for advanced manufacturing paradigms. Reliab Eng Syst Safe 178:255–268. https://doi.org/10.1016/j.ress.2018.06.021

    Article  Google Scholar 

  8. Li D, Wang Y, Wang J, Wang C, Duan Y (2020) Recent advances in sensor fault diagnosis: a review. Sensors Actuators A Phys 309:111990. https://doi.org/10.1016/j.sna.2020.111990

    Article  Google Scholar 

  9. Yang F, Habibullah MS, Zhang T, Xu Z, Lim P, Nadarajan S (2016) Health index-based prognostics for remaining useful life predictions in electrical machines. IEEE T Ind Electron 63(4):2633–2644. https://doi.org/10.1109/TIE.2016.2515054

    Article  Google Scholar 

  10. Mohanraj T, Shankar S, Rajasekar R, Sakthivel NR, Pramanik A (2020) Tool condition monitoring techniques in milling process — a review. J Mater Res Technol 9(1):1032–1042. https://doi.org/10.1016/j.jmrt.2019.10.031

    Article  Google Scholar 

  11. Goodall P, Pantazis D, West A (2020) A cyber physical system for tool condition monitoring using electrical power and a mechanistic model. Comput Ind 118:103223. https://doi.org/10.1016/j.compind.2020.103223

    Article  Google Scholar 

  12. Nouri M, Fussell BK, Ziniti BL, Linder E (2015) Real-time tool wear monitoring in milling using a cutting condition independent method. Int J Mach Tools Manuf 89:1–13. https://doi.org/10.1016/j.ijmachtools.2014.10.011

    Article  Google Scholar 

  13. Oo H, Wang W, Liu Z (2020) Tool wear monitoring system in belt grinding based on image-processing techniques. Int J Adv Manuf Technol 111(7-8):2215–2229. https://doi.org/10.1007/s00170-020-06254-1

    Article  Google Scholar 

  14. Qin A, Guo L, You Z, Gao H, Wu X, Xiang S (2020) Research on automatic monitoring method of face milling cutter wear based on dynamic image sequence. Int J Adv Manuf Technol 110(11-12):3365–3376. https://doi.org/10.1007/s00170-020-05955-x

    Article  Google Scholar 

  15. Fernández-Robles L, Sánchez-González L, Díez-González J, Castejón-Limas M, Pérez H (2020) Use of image processing to monitor tool wear in micro milling. Neurocomputing. 452:333–340. https://doi.org/10.1016/j.neucom.2019.12.146

    Article  Google Scholar 

  16. Bhat NN, Dutta S, Vashisth T, Pal S, Pal SK, Sen R (2016) Tool condition monitoring by SVM classification of machined surface images in turning. Int J Adv Manuf Technol 83(9-12):1487–1502. https://doi.org/10.1007/s00170-015-7441-3

    Article  Google Scholar 

  17. Ong P, Lee WK, Lau RJH (2019) Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. Int J Adv Manuf Technol 104(1-4):1369–1379. https://doi.org/10.1007/s00170-019-04020-6

    Article  Google Scholar 

  18. Shen B, Gui Y, Chen B, Lin Z, Liu Q, Liu Q (2020) Application of spindle power signals in tool condition monitoring based on HHT algorithm. Int J Adv Manuf Technol 106(3-4):1385–1395. https://doi.org/10.1007/s00170-019-04684-0

    Article  Google Scholar 

  19. Uekita M, Takaya Y (2017) Tool condition monitoring for form milling of large parts by combining spindle motor current and acoustic emission signals. Int J Adv Manuf Technol 89(1-4):65–75. https://doi.org/10.1007/s00170-016-9082-6

    Article  Google Scholar 

  20. Xie Z, Lu Y, Chen X (2020) A multi-sensor integrated smart tool holder for cutting process monitoring. Int J Adv Manuf Technol 110(3-4):853–864. https://doi.org/10.1007/s00170-020-05905-7

    Article  Google Scholar 

  21. Bhuiyan MSH, Choudhury IA, Dahari M (2014) Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning. J Manuf Syst 33(4):476–487. https://doi.org/10.1016/j.jmsy.2014.04.005

    Article  Google Scholar 

  22. Liu R, Kothuru A, Zhang S (2020) Calibration-based tool condition monitoring for repetitive machining operations. J Manuf Syst 54:285–293. https://doi.org/10.1016/j.jmsy.2020.01.005

    Article  Google Scholar 

  23. Soualhi M, Nguyen KTP, Medjaher K (2020) Pattern recognition method of fault diagnostics based on a new health indicator for smart manufacturing. Mech Syst Signal Pr 142:106680. https://doi.org/10.1016/j.ymssp.2020.106680

    Article  Google Scholar 

  24. Lamraoui M, Thomas M, El Badaoui M (2014) Cyclostationarity approach for monitoring chatter and tool wear in high speed milling. Mech Syst Signal Pr 44(1-2):177–198. https://doi.org/10.1016/j.ymssp.2013.05.001

    Article  Google Scholar 

  25. Zorriassatine F, Al-Habaibeh A, Parkin RM, Jackson MR, Coy J (2005) Novelty detection for practical pattern recognition in condition monitoring of multivariate processes: a case study. Int J Adv Manuf Technol 25(9-10):954–963. https://doi.org/10.1007/s00170-004-2174-8

    Article  Google Scholar 

  26. Lu Z, Wang M, Dai W, Sun J (2019) In-process complex machining condition monitoring based on deep forest and process information fusion. Int J Adv Manuf Technol 104(5-8):1953–1966. https://doi.org/10.1007/s00170-019-03919-4

    Article  Google Scholar 

  27. Stavropoulos P, Papacharalampopoulos A, Vasiliadis E, Chryssolouris G (2016) Tool wear predictability estimation in milling based on multi-sensorial data. Int J Adv Manuf Technol 82(1-4):509–521. https://doi.org/10.1007/s00170-015-7317-6

    Article  Google Scholar 

  28. Wang H, Ni G, Chen J, Qu J (2020) Research on rolling bearing state health monitoring and life prediction based on PCA and Internet of things with multi-sensor. Measurement 157:107657. https://doi.org/10.1016/j.measurement.2020.107657

    Article  Google Scholar 

  29. Rizal M, Ghani JA, Nuawi MZ, Haron CHC (2017) Cutting tool wear classification and detection using multi-sensor signals and Mahalanobis-Taguchi system. Wear 376-377:1759–1765. https://doi.org/10.1016/j.wear.2017.02.017

    Article  Google Scholar 

  30. Wong SY, Chuah JH, Yap HJ (2020) Technical data-driven tool condition monitoring challenges for CNC milling: a review. Int J Adv Manuf Technol 107(11-12):4837–4857. https://doi.org/10.1007/s00170-020-05303-z

    Article  Google Scholar 

  31. Fuqua D, Razzaghi T (2020) A cost-sensitive convolution neural network learning for control chart pattern recognition. Expert Syst Appl 150:113275. https://doi.org/10.1016/j.eswa.2020.113275

    Article  Google Scholar 

  32. Roberts SW (2000) Control chart tests based on geometric moving averages [J]. Technometrics 42(1):97–101. https://doi.org/10.1080/00401706.2000.10485986

  33. Wetherill GB (1977) Cumulative sum charts. In: Sampling Inspection and Quality Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6858-6_4

  34. Addeh A, Khormali A, Golilarz NA (2018) Control chart pattern recognition using RBF neural network with new training algorithm and practical features. ISA T 79:202–216. https://doi.org/10.1016/j.isatra.2018.04.020

  35. Aziz Kalteh A, Babouei S (2020) Control chart patterns recognition using ANFIS with new training algorithm and intelligent utilization of shape and statistical features. ISA T 102:12–22. https://doi.org/10.1016/j.isatra.2019.12.001

    Article  Google Scholar 

  36. Lu Z, Wang M, Dai W (2020) A condition monitoring approach for machining process based on control chart pattern recognition with dynamically-sized observation windows. Comput Ind Eng 142:106360. https://doi.org/10.1016/j.cie.2020.106360

    Article  Google Scholar 

  37. Jiang Y, Xu Z, Zhang Z, Liu X (2019) A novel shearer cutting pattern recognition model with chaotic gravitational search optimization. Measurement 144:225–233. https://doi.org/10.1016/j.measurement.2019.05.019

    Article  Google Scholar 

  38. Lyu P, Yao L, Ma X, An G, Bai G, Augousti AT, Tong X (2020) Correlation between failure mechanism and rupture lifetime of 2D-C/SiC under stress oxidation condition based on acoustic emission pattern recognition. J Eur Ceram Soc 40(15):5094–5102. https://doi.org/10.1016/j.jeurceramsoc.2020.06.070

    Article  Google Scholar 

  39. Taha IBM, Dessouky SS, Ghoneim SSM (2021) Transformer fault types and severity class prediction based on neural pattern-recognition techniques. Electr Pow Syst Res 191:106899. https://doi.org/10.1016/j.epsr.2020.106899

    Article  Google Scholar 

  40. Cheng Z, Yang Y, Wang W, Hu W, Zhuang YASG (2020) Time2Graph: revisiting time series modeling with dynamic shapelets. Paper presented at the Association for the Advancement of Artificial Intelligence (AAAI)

  41. Jin X, Han J (2010) K-means clustering. In C Sammut, GI Webb (Eds.), Encyclopedia of Machine Learning (563-564). Boston, MA: Springer US. (Reprinted). https://doi.org/10.1007/978-0-387-30164-8_425

  42. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57. https://doi.org/10.1007/s11721-007-0002-0

  43. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 1(20):273–297

    MATH  Google Scholar 

  44. Brereton RG, Lloyd GR (2010) Support vector machines for classification and regression. The Analyst 135(2):230–267. https://doi.org/10.1039/B918972F

    Article  Google Scholar 

  45. Zhou Y, Xue W (2018) Review of tool condition monitoring methods in milling processes. Int J Adv Manuf Technol 96(5-8):2509–2523. https://doi.org/10.1007/s00170-018-1768-5

    Article  Google Scholar 

  46. PHM Society (2010) PHM data challenge. Available. URL. https://www.Phmsociety.org/competition/phm/10S

  47. Xie Z, Li J, Lu Y (2019) Feature selection and a method to improve the performance of tool condition monitoring. Int J Adv Manuf Technol 100(9-12):3197–3206. https://doi.org/10.1007/s00170-018-2926-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 51705015) and the National Defense Fundamental Research Foundation of China (No. JCKY2018203C005).

Author information

Authors and Affiliations

Authors

Contributions

Wei Dai contributed to the conception and methodology and wrote the original draft of the study. Kui Liang performed supervising and writing a review of the manuscript. Tingting Huang contributed significantly to the analysis, review, and editing of the manuscript. Zhiyuan Lu helped perform the analysis with constructive discussions [16].

Corresponding author

Correspondence to Tingting Huang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Liang, K., Huang, T. et al. Tool condition monitoring in the milling process based on multisource pattern recognition model. Int J Adv Manuf Technol 119, 2099–2114 (2022). https://doi.org/10.1007/s00170-021-08012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08012-3

Keywords

Navigation