Skip to main content
Log in

Cutting force modeling and experimental validation for micro end milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro end milling has an outstanding capability in machining micro-scale structures of various materials. Prediction of cutting forces is significant on controlling quality and safety of machining process. This paper proposes a mechanic model to predict cutting forces in micro end milling process, which includes a novel algorithm of instant uncut chip thickness. This algorithm takes into account the geometric errors of machining system and trochoidal trajectory of cutting edge, which redefines cutting radii with consideration of the tool runout. A feasible technique to reduce the influence of tool runout is put forward by analyzing the redefined cutting radii. Since the existing method for cutting force coefficient identification is generally conducted using finite element simulation, it is difficult for some composite materials due to lack of the material properties. To overcome the above shortcomings, an experimental-based cutting force coefficient identification technique has been developed by groove milling. A number of experimental testing have been conducted to validate the developed cutting force model. Experimental results are in good agreement with theoretical predictions, which demonstrates the validity of proposed cutting force modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Uhlmann E, Piltz S, Doll U (2005) Machining of micro/miniature dies and moulds by electrical discharge machining - recent development. J Mater Process Technol 167(2-3):488–493. https://doi.org/10.1016/j.jmatprotec.2005.06.013

    Article  Google Scholar 

  2. Boswell B, Islam MN, Davies IJ (2018) A review of micro-mechanical cutting. Int J Adv Manuf Technol 94(1-4):789–806. https://doi.org/10.1007/s00170-017-0912-y

    Article  Google Scholar 

  3. Camara MA, Campos Rubio JC, Abrao AM et al (2012) State of the art on micromilling of materials, a review. J Mater Sci Technol 28(8):673–685

    Article  Google Scholar 

  4. Liang C, Wang F, Huo Z et al (2019) A 2-DOF monolithic compliant rotation platform driven by piezoelectric actuators. IEEE Trans Ind Electron 67(8):6963–6974

    Article  Google Scholar 

  5. Miao JC, Chen GL, Lai XM, Li HT, Li CF (2007) Review of dynamic issues in micro-end-milling. Int J Adv Manuf Technol 31(9):897–904. https://doi.org/10.1007/s00170-005-0276-6

    Article  Google Scholar 

  6. Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. CIRP Ann 60(1):77–80. https://doi.org/10.1016/j.cirp.2011.03.084

    Article  Google Scholar 

  7. Zhang XW, Ehmann KF, Yu TB et al (2016) Cutting forces in micro-end-milling processes. Int J Mach Tool Manu 107:21–40. https://doi.org/10.1016/j.ijmachtools.2016.04.012

    Article  Google Scholar 

  8. Tansel I, Rodriguez O, Trujillo M, Paz E, Li W (1998) Micro-end-milling - I. Wear and breakage. Int J Mach Tool Manu 38(12):1419–1436. https://doi.org/10.1016/s0890-6955(98)00015-7

    Article  Google Scholar 

  9. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tool Manu 40(15):2155–2173. https://doi.org/10.1016/s0890-6955(00)00054-7

    Article  Google Scholar 

  10. Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part II: tool run-out. Int J Mach Tool Manu 40(15):2175–2192. https://doi.org/10.1016/s0890-6955(00)00055-9

    Article  Google Scholar 

  11. Li HZ, Liu K, Li XP (2001) A new method for determining the undeformed chip thickness in milling. J Mater Process Technol 113(1-3):378–384. https://doi.org/10.1016/s0924-0136(01)00586-6

    Article  Google Scholar 

  12. Dow TA, Miller EL, Garrard K (2004) Tool force and deflection compensation for small milling tools. Precision Eng J Int Soc Prec Eng Nanotechnol 28(1):31–45. https://doi.org/10.1016/s0141-6359(03)00072-2

    Article  Google Scholar 

  13. Vogler MP, Kapoo SG, Devor RE (2004) On the modeling and analysis of machining performance in micro-endmilling, Part II: Cutting force prediction. J Manuf Sci Eng Trans Asme 126(4):695–705. https://doi.org/10.1115/1.1813471

    Article  Google Scholar 

  14. Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. Cirp Annals-Manuf Technol 57(1):113–116. https://doi.org/10.1016/j.cirp.2008.03.085

    Article  Google Scholar 

  15. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tool Manu 48(1):1–14. https://doi.org/10.1016/j.ijmachtools.2007.08.011

    Article  Google Scholar 

  16. Malekian M, Park SS, Jun MBC (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tool Manu 49(7-8):586–598. https://doi.org/10.1016/j.ijmachtools.2009.02.006

    Article  Google Scholar 

  17. Jin X, Altintas Y (2012) Prediction of micro-milling forces with finite element method. J Mater Process Technol 212(3):542–552

    Article  Google Scholar 

  18. Jing X, Li H, Wang J, Tian Y (2014) Modelling the cutting forces in micro-end-milling using a hybrid approach. Int J Adv Manuf Technol 73(9-12):1647–1656. https://doi.org/10.1007/s00170-014-5953-x

    Article  Google Scholar 

  19. De Oliveira FB, Rodrigues AR, Coelho RT et al (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tool Manu 89:39–54. https://doi.org/10.1016/j.ijmachtools.2014.11.001

    Article  Google Scholar 

  20. Grossi N, Sallese L, Scippa A, Campatelli G (2015) Speed-varying cutting force coefficient identification in milling. Precision Eng J Int Soc Prec Eng Nanotechnol 42:321–334. https://doi.org/10.1016/j.precisioneng.2015.04.006

    Article  Google Scholar 

  21. Mamedov A, Layegh KSE, Lazoglu I (2015) Instantaneous tool deflection model for micro milling. Int J Adv Manuf Technol 79(5-8):769–777. https://doi.org/10.1007/s00170-015-6877-9

    Article  Google Scholar 

  22. Thepsonthi T, Ozel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. J Mater Process Technol 221:128–145. https://doi.org/10.1016/j.jmatprotec.2015.02.019

    Article  Google Scholar 

  23. Zhang X, Yu T, Wang W (2017) Instantaneous uncut chip thickness modeling for micro-end milling process. Mach Sci Technol 21(4):582–602. https://doi.org/10.1080/10910344.2017.1336181

    Article  Google Scholar 

  24. Yuan Y, Jing X, Ehmann KF, Cao J, Li H, Zhang D (2018) Modeling of cutting forces in micro end-milling. J Manuf Process 31:844–858. https://doi.org/10.1016/j.jmapro.2018.01.012

    Article  Google Scholar 

  25. Jing X, Li H, Wang J, Tian Y (2014) Modelling the cutting forces in micro-end-milling using a hybrid approach. Int J Adv Manuf Technol 73(9-12):1647–1656

    Article  Google Scholar 

  26. Zhou Y, Tian Y, Jing X, Ehmann KF (2017) A novel instantaneous uncut chip thickness model for mechanistic cutting force model in micro-end-milling. Int J Adv Manuf Technol 93(5-8):2305–2319. https://doi.org/10.1007/s00170-017-0638-x

    Article  Google Scholar 

  27. Zhang X, Yu T, Wang W (2019) Cutting forces modeling for micro flat end milling by considering tool run-out and bottom edge cutting effect. Proc Inst Mech Eng B J Eng Manuf 233(2):470–485. https://doi.org/10.1177/0954405417726811

    Article  Google Scholar 

  28. Armarego E (1998) A generic mechanics of cutting approach to predictive technological performance modeling of the wide spectrum of machining operations. Mach Sci Technol 2(2):191–211

    Article  Google Scholar 

  29. Jing X, Tian Y, Yuan Y, Wang F (2017) A runout measuring method using modeling and simulation cutting force in micro end-milling. Int J Adv Manuf Technol 91(9):4191–4201

    Article  Google Scholar 

  30. Mittal RK, Kulkarni SS, Singh RK (2017) Effect of lubrication on machining response and dynamic instability in high-speed micromilling of Ti-6Al-4V. J Manuf Process 28:413–421. https://doi.org/10.1016/j.jmapro.2017.04.007

    Article  Google Scholar 

  31. Wojciechowski S, Matuszak M, Powalka B et al (2019) Prediction of cutting forces during micro end milling considering chip thickness accumulation. Int J Mach Tool Manu 147:103466. https://doi.org/10.1016/j.ijmachtools.2019.103466

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the supports of the Laboratory of Precision Manufacturing Technology (CAEP. NO. ZM18007).

Author information

Authors and Affiliations

Authors

Contributions

Weijie Wang: Conceptualization, methodology, investigation, and writing. Weiwei Zhang: Resources and supervision. Dingchuan Huang: Data curation and original draft. Wei Wang: Validation and investigation.

Corresponding author

Correspondence to Weiwei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, W., Huang, D. et al. Cutting force modeling and experimental validation for micro end milling. Int J Adv Manuf Technol 117, 933–947 (2021). https://doi.org/10.1007/s00170-021-07815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07815-8

Keywords

Navigation