Skip to main content

Advertisement

Log in

Concurrent improvement of surface roughness and residual stress of as-built and aged additively manufactured maraging steel post-processed by milling

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser Powder Bed Fusion (LPBF) technology enables the layerwise manufacturing of high-performance materials with different build orientations and shapes. However, even with the potential to improve primary mechanical properties and surface finishing depending on the process parameters, additional post-processing can be required to meet tight application requisites, mainly related to the surface roughness and residual stress. This study examined the concurrent effects of the build orientation (XYZ, XYZ-45, and YZX) on the LPBF manufacturing combined with the post-process steps of aging treatment (480 °C for 3 h) and milling with different cutting speeds and feed per tooth on the surface condition of maraging steel samples. Experimental tests followed by statistical analyses regarding the average roughness and residual stress allow identifying cause and effect mechanisms that affected the samples’ surface finishing and residual stresses. The main changes were related to mechanical anisotropy and layers arrangement of the maraging steel produced by LPBF and milled with different sample conditions, build orientations, and cutting parameters. The best average roughness of 0.37 ± 0.09 μm could be achieved with fz = 0.02 mm/tooth and vc = 250 m/min on the aged XYZ sample that also had a surface compressive stress of -690 MPa. Moreover, as-built and aged XYZ-45 and YZX samples could change from a tensile behavior obtained with LPBF to a compressive one when milled with fz = 0.02 mm/tooth due to concurrent effects of LPBF, heat treatment, and milling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. ASTM International (2015) ISO/ASTM 52900:2015 - Standard terminology for additive manufacturing - general principles - terminology. 1–9. https://doi.org/10.1520/ISOASTM52900-15

  2. Becker TH, Dimitrov D (2016) The achievable mechanical properties of SLM produced Maraging Steel 300 components. Rapid Prototyp J 22:487–494. https://doi.org/10.1108/RPJ-08-2014-0096

    Article  Google Scholar 

  3. Fortunato A, Lulaj A, Melkote S, Liverani E, Ascari A, Umbrello D (2018) Milling of maraging steel components produced by selective laser melting. Int J Adv Manuf Technol 94:1895–1902. https://doi.org/10.1007/s00170-017-0922-9

    Article  Google Scholar 

  4. Ullah R, Akmal JS, Laakso S, Niemi E (2020) Anisotropy of additively manufactured 18Ni-300 maraging steel: threads and surface characteristics. Procedia CIRP 93:68–78. https://doi.org/10.1016/j.procir.2020.04.059

    Article  Google Scholar 

  5. Song J, Tang Q, Feng Q, Ma S, Setchi R, Liu Y, Han Q, Fan X, Zhang M (2019) Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt Laser Technol 120:1–11. https://doi.org/10.1016/j.optlastec.2019.105725

    Article  Google Scholar 

  6. Mutua J, Nakata S, Onda T, Chen ZC (2018) Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des 139:486–497. https://doi.org/10.1016/j.matdes.2017.11.042

    Article  Google Scholar 

  7. Cyr E, Lloyd A, Mohammadi M (2018) Tension-compression asymmetry of additively manufactured maraging steel. J Manuf Process 35:289–294. https://doi.org/10.1016/j.jmapro.2018.08.015

    Article  Google Scholar 

  8. Tan C, Zhou K, Ma W, Zhang P, Liu M, Kuang T (2017) Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des 134:23–34. https://doi.org/10.1016/j.matdes.2017.08.026

    Article  Google Scholar 

  9. Bhardwaj T, Shukla M (2018) Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater Sci Eng A 734:102–109. https://doi.org/10.1016/j.msea.2018.07.089

    Article  Google Scholar 

  10. Kim D, Kim T, Ha K, Oak JJ, Jeon JB, Park Y, Lee W (2020) Effect of heat treatment condition on microstructural and mechanical anisotropies of selective laser melted maraging 18Ni-300 steel. Metals (Basel) 10:410. https://doi.org/10.3390/met10030410

    Article  Google Scholar 

  11. Conde FF, Escobar JD, Oliveira JP, Béreš M, Jardini AL, Bose WW, Avila JA (2019) Effect of thermal cycling and aging stages on the microstructure and bending strength of a selective laser melted 300-grade maraging steel. Mater Sci Eng A 758:192–201. https://doi.org/10.1016/j.msea.2019.03.129

    Article  Google Scholar 

  12. Jao TC, Devlin MT, Milner JL et al (2006) Influence of surface roughness on gear pitting behavior. In: Gear Technol. https://www.geartechnology.com/issues/0506x/pitting.pdf. Accessed 4 Jun 2021

  13. Lou S, Jiang X, Sun W, Zeng W, Pagani L, Scott PJ (2019) Characterisation methods for powder bed fusion processed surface topography. Precis Eng 57:1–15. https://doi.org/10.1016/j.precisioneng.2018.09.007

    Article  Google Scholar 

  14. Vrancken B, Wauthle R, Kruth JP, Van Humbeeck J (2013) Study of the influence of material properties on residual stress in selective laser melting. Proceedings of the 24th International Solid Freeform Fabrication Symposium, Austin, pp 393-407

  15. Fei J, Liu G, Patel K, Özel T (2020) Effects of machining parameters on finishing additively manufactured nickel-based alloy Inconel 625. J Manuf Mater Process 4:32. https://doi.org/10.3390/jmmp4020032

    Article  Google Scholar 

  16. Tomaz ÍV, Pardal JM, Fonseca MC (2019) Influence of minimum quantity lubrication in the surface quality of milled maraging steel. Int J Adv Manuf Technol 104:4301–4311. https://doi.org/10.1007/s00170-019-04262-4

    Article  Google Scholar 

  17. Withers PJ, Bhadeshia HKDH (2001) Residual stress part 1 - measurement techniques. Mater Sci Technol 17:355–365. https://doi.org/10.1179/026708301101509980

    Article  Google Scholar 

  18. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  19. Boschetto A, Bottini L, Veniali F (2017) Roughness modeling of AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol 241:154–163. https://doi.org/10.1016/j.jmatprotec.2016.11.013

    Article  Google Scholar 

  20. Boschetto A, Bottini L, Pilone D (2021) Effect of laser remelting on surface roughness and microstructure of AlSi10Mg selective laser melting manufactured parts. Int J Adv Manuf Technol 113:2739–2759. https://doi.org/10.1007/s00170-021-06775-3

    Article  Google Scholar 

  21. Mooney B, Kourousis KI (2020) A review of factors affecting the mechanical properties of maraging steel 300 fabricated via laser powder bed fusion. Metals (Basel) 10:1–22. https://doi.org/10.3390/met10091273

    Article  Google Scholar 

  22. Oliveira AR, Jardini AL, Del Conte EG (2020) Effects of cutting parameters on roughness and residual stress of maraging steel specimens produced by additive manufacturing. Int J Adv Manuf Technol 111:2449–2459. https://doi.org/10.1007/s00170-020-06309-3

    Article  Google Scholar 

  23. Sen C, Subasi L, Ozaner OC, Orhangul A (2020) The effect of milling parameters on surface properties of additively manufactured Inconel 939. Procedia CIRP 87:31–34. https://doi.org/10.1016/j.procir.2020.02.072

    Article  Google Scholar 

  24. Du W, Bai Q, Zhang B (2018) Machining characteristics of 18Ni-300 steel in additive/subtractive hybrid manufacturing. Int J Adv Manuf Technol 95:2509–2519. https://doi.org/10.1007/s00170-017-1364-0

    Article  Google Scholar 

  25. Lela B, Bajić D, Jozić S (2009) Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. Int J Adv Manuf Technol 42:1082–1088. https://doi.org/10.1007/s00170-008-1678-z

    Article  Google Scholar 

  26. Hashimura M, Chang YP, Dornfeld D (1999) Analysis of burr formation mechanism in orthogonal cutting. J Manuf Sci Eng Trans ASME 121:1–7. https://doi.org/10.1115/1.2830569

    Article  Google Scholar 

  27. Chen W (2000) Cutting forces and surface finish when machining medium hardness steel using CBN tools. Int J Mach Tools Manuf 40:455–466. https://doi.org/10.1016/S0890-6955(99)00011-5

    Article  Google Scholar 

  28. Jeelani S, Ramakrishnan K (1985) Surface damage in machining titanium 6Al-2Sn-4Zr-2Mo alloy. J Mater Sci 20:3245–3252. https://doi.org/10.1007/BF00545191

    Article  Google Scholar 

  29. Biondani F, Bissacco G, Hansen HN (2020) Surface topography analysis of ball end milled tool steel surfaces. Procedia CIRP 87:153–158. https://doi.org/10.1016/j.procir.2020.03.002

    Article  Google Scholar 

  30. Navas VG, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57. https://doi.org/10.1016/j.ijmachtools.2012.05.008

    Article  Google Scholar 

  31. Bai Y, Zhao C, Yang J, Hong R, Weng C, Wang H (2021) Microstructure and machinability of selective laser melted high-strength maraging steel with heat treatment. J Mater Process Technol 288:1–18. https://doi.org/10.1016/j.jmatprotec.2020.116906

    Article  Google Scholar 

  32. Lizzul L, Sorgato M, Bertolini R, Ghiotti A, Bruschi S (2021) Anisotropy effect of additively manufactured Ti6Al4V titanium alloy on surface quality after milling. Precis Eng 67:301–310. https://doi.org/10.1016/j.precisioneng.2020.10.003

    Article  Google Scholar 

  33. Oliveira AR, Diaz JAA, Nizes ADC, Jardini AL, del Conte EG (2021) Investigation of building orientation and aging on strength–stiffness performance of additively manufactured maraging steel. J Mater Eng Perform 30:1479–1489. https://doi.org/10.1007/s11665-020-05414-4

    Article  Google Scholar 

  34. ASTM International (2019) 52921:2019 - Standard terminology for additive manufacturing - coordinate systems and test. 1–13. https://doi.org/10.1520/ISOASTM52921-13R19

  35. ASTM International (2014) A751:14a - Standard test methods, practices, and terminology for chemical analysis of steel products. 1-6. https://doi.org/10.1520/A0751-14A

  36. Nilsén F, Ituarte IF, Salmi M, Partanen J, Hannula SP (2019) Effect of process parameters on non-modulated Ni-Mn-Ga alloy manufactured using powder bed fusion. Addit Manuf 28:464–474. https://doi.org/10.1016/j.addma.2019.05.029

    Article  Google Scholar 

  37. Carpenter Additive (2019) Technical data sheet - CT PowderRange M300 F. https://cdn2.hubspot.net/hubfs/6205315/carpenter_additive/image/Resources/Datasheets/CTPowderRangeM300F.pdf. Accessed 4 Aug 2020

  38. Montgomery DC (2008) Design and analysis of experiments, 7 th. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  39. ASTM International (2013) B962-13 - Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle. 1–7. https://doi.org/10.1520/B0962-13

  40. Suryawanshi J, Prashanth KG, Ramamurty U (2017) Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J Alloys Compd 725:355–364. https://doi.org/10.1016/j.jallcom.2017.07.177

    Article  Google Scholar 

  41. Dino F (2018) Mecanismo da Formação do Cavaco. In: Fundamentos da Usinagem dos Metais, 18th edn. Blucher, São Paulo, pp 89–152

    Google Scholar 

  42. Groover MP (2010) Fundamentals of modern manufacturing - materials, processes, and systems, 4 th edn. John Wiley & Sons, Inc

  43. Kaynak Y, Tascioglu E (2018) Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy. Procedia CIRP 71:500–504. https://doi.org/10.1016/j.procir.2018.05.013

    Article  Google Scholar 

  44. Maconachie T, Leary M, Zhang J, Medvedev A, Sarker A, Ruan D, Lu G, Faruque O, Brandt M (2020) Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg. Mater Sci Eng A 788:139445. https://doi.org/10.1016/j.msea.2020.139445

    Article  Google Scholar 

  45. Callister WD (2001) Fundamentals of materials science and engineering, 15th edn. John Wiley & Sons Inc.

  46. Tecelli Öpöz T, Chen X (2016) Chip formation mechanism using finite element simulation. Strojniški Vestn - J Mech Eng 62:636–646. https://doi.org/10.5545/sv-jme.2016.2523

    Article  Google Scholar 

  47. Ooi SW, Hill P, Rawson M, Bhadeshia HKDH (2013) Effect of retained austenite and high temperature Laves phase on the work hardening of an experimental maraging steel. Mater Sci Eng A 564:485–492. https://doi.org/10.1016/j.msea.2012.12.016

    Article  Google Scholar 

  48. Dowling NE (2013) Mechanical behavior of materials - engineering methods for deformation, fracture, and fatigue, 4th edn. Pearson Education Limited, Edimburgo

    Google Scholar 

  49. Guo P, Zou B, Huang C, Gao H (2017) Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J Mater Process Technol 240:12–22. https://doi.org/10.1016/j.jmatprotec.2016.09.005

    Article  Google Scholar 

  50. Acevedo R, Sedlak P, Kolman R, Fredel M (2020) Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: state of the art review. J Mater Res Technol 9:9457–9477. https://doi.org/10.1016/j.jmrt.2020.05.092

    Article  Google Scholar 

  51. Noyan IC, Cohen JB (1986) Residual stress: measurement by diffraction and interpretation. Springer Science+Business Media New York, New York

    Google Scholar 

  52. Lindgren M, Lepistö T (2003) Relation between residual stress and Barkhausen noise in a duplex steel. NDT E Int 36:279–288. https://doi.org/10.1016/S0963-8695(03)00002-1

    Article  Google Scholar 

  53. de Oliveira AR, de Oliveira VF, Teixeira JC, Del Conte EG (2021) Investigation of the build orientation effect on magnetic properties and Barkhausen Noise of additively manufactured maraging steel 300. Addit Manuf 38:101827. https://doi.org/10.1016/j.addma.2020.101827

    Article  Google Scholar 

  54. Takata N, Nishida R, Suzuki A, Kobashi M, Kato M (2018) Crystallographic features of microstructure in maraging steel fabricated by selective laser melting. Metals (Basel) 8:10. https://doi.org/10.3390/met8060440

    Article  Google Scholar 

  55. Bartlett JL, Li X (2019) An overview of residual stresses in metal powder bed fusion. Addit Manuf 27:131–149. https://doi.org/10.1016/j.addma.2019.02.020

    Article  Google Scholar 

  56. Cao Q, Zhang J, Chang S, Fuh JYH, Wang H (2020) The effect of support structures on maraging steel MS1 parts fabricated by selective laser melting at different building angles. Rapid Prototyp J 26:1465–1476. https://doi.org/10.1108/RPJ-11-2019-0287

    Article  Google Scholar 

  57. Özel T, Hsu T-K, Zeren E (2005) Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int J Adv Manuf Technol 25:262–269. https://doi.org/10.1007/s00170-003-1878-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to André Luiz Jardini Munhoz (National Institute of Biofabrication - BIOFABRIS, Campinas, Brazil), Alisson Denis Carros Nizes (Thyssenkrupp Brasil Ltda. Division Springs & Stabilizers, Brazil), Anibal de Andrade Mendes Filho, and Osmando Cardoso.

Funding

This study is supported by the project grant #2018/11282-0, São Paulo Research Foundation (FAPESP). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Rossi de Oliveira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A.R., Del Conte, E.G. Concurrent improvement of surface roughness and residual stress of as-built and aged additively manufactured maraging steel post-processed by milling. Int J Adv Manuf Technol 116, 2309–2323 (2021). https://doi.org/10.1007/s00170-021-07527-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07527-z

Keywords

Navigation