Skip to main content
Log in

Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, the temperature evolution, microstructure, and mechanical properties of friction stir welded 80-mm super-thick plate 6082 aluminum alloy were investigated. Combined with numerical simulation and actual measurement, the thermal cycle curve during welding is obtained, and the accuracy of numerical calculation is verified. The numerical model calculating data shows that the peak temperature difference is up to 109 °C along the thickness direction of the weld in weld nugget zone (WNZ). Different degrees of dynamic recrystallization occur in WNZ, resulting in different grain sizes along the thickness direction of the weld. Each zone is subject to different heat cycle temperatures, so the type, number, and size of the precipitated phases are different. The microhardness curves of each layer of welded joints are all W-shaped, and the microhardness distribution between advancing side and retreating side has significant asymmetry. The fracture location of each layer of weld is located in the heat affected zone on the side of thermomechanical affected zone (HAZTMAZ). The surface of the joint has the highest mechanical properties. Fractures in all tensile specimens were ductile fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A 280(1):37–49. https://doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  2. Bai Y, Gao HM, Wu L, Ma CH, Cao N (2010) Influence of plasma-MIG welding parameters on aluminum weld porosity by orthogonal test. Trans Nonferrous Metal Soc (08):36–40

  3. Sanchez-Amaya JM, Delgado T, Gonzalez-Rovira L, Botana FJ (2009) Laser welding of aluminium alloys 5083 and 6082 under conduction regime. Appl Surf Sci 255(23):9512–9521. https://doi.org/10.1016/j.apsusc.2009.07.081

    Article  Google Scholar 

  4. Genevois C, Deschamps A, Denquin A, Doisneau-Cottignies B (2005) Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Mater 53(8):2447–2458. https://doi.org/10.1016/j.actamat.2005.02.007

    Article  Google Scholar 

  5. Xu WF, Liu JH, Luan GH, Dong CL (2009) Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Mater Des 30(6):1886–1893. https://doi.org/10.1016/j.matdes.2008.09.021

    Article  Google Scholar 

  6. Mao YQ, Ke LM, Liu FC, Chen YH, Li X (2015) Investigations on temperature distribution, microstructure evolution, and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates. Int J Adv Manuf Technol 86(1):1–14. https://doi.org/10.1007/s00170-015-8182-z

    Article  Google Scholar 

  7. Ghetiya ND, Patel KM, Patel AB (2015) Prediction of temperature at weldline in air and immersed friction stir welding and its experimental validation. Int J Adv Manuf Technol 79(5-8):1239–1246. https://doi.org/10.1007/s00170-015-6906-8

    Article  Google Scholar 

  8. Abbasi M, Bagheri B, Keivani R (2015) Thermal analysis of friction stir welding process and investigation into affective parameters using simulation. J Mech Sci Technol 29(2):861–866. https://doi.org/10.1007/s12206-015-0149-3

    Article  Google Scholar 

  9. Hwang YM, Kang ZW, Chiou YC, Hsu HH (2008) Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. Int J Mach Tool Manu 48(7-8):778–787. https://doi.org/10.1016/j.ijmachtools.2007.12.003

    Article  Google Scholar 

  10. Liu FJ, Fu L, Chen HY (2018) Effect of high rotational speed on temperature distribution, microstructure evolution, and mechanical properties of friction stir welded 6061-T6 thin plate joints. Int J Adv Manuf Technol 96:1823–1833. https://doi.org/10.1007/s00170-018-1736-0

    Article  Google Scholar 

  11. Tang W, Guo X, Mcclure JC, Murr L, Nunes AC (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf 7(2):163–172. https://doi.org/10.1106/55TF-PF2G-JBH2-1Q2B

    Article  Google Scholar 

  12. Dumont M, Steuwer A, Deschamps A, Peel M, Withers PJ (2006) Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS. Acta Mater 54(18):4793–4801. https://doi.org/10.1016/j.actamat.2006.06.015

    Article  Google Scholar 

  13. Su JQ, Nelson TW, Sterling CJ (2005) Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A 405(1-2):277–286. https://doi.org/10.1016/j.msea.2005.06.009

    Article  Google Scholar 

  14. Kim YG, Fujii H, Tsumura T, Nakata K (2006) Effect of welding parameters on microstructure in the stir zone of FSW joints of aluminum die casting alloy. Mater Lett 60(29-30):3830–3837. https://doi.org/10.1016/j.matlet.2006.03.123

    Article  Google Scholar 

  15. Li WY, Li JF, Zhang ZH, Gao DL, Chao YJ (2013) Metal flow during friction stir welding of 7075-T651 aluminum alloy. Exp Mech 53(9):1573–1582. https://doi.org/10.1007/s11340-013-9760-3

    Article  Google Scholar 

  16. Schmidt HNB, Dickerson TL, Hattel JH (2006) Material flow in butt friction stir welds in AA2024-T3. Acta Mater 54(4):1199–1209. https://doi.org/10.1016/j.actamat.2005.10.052

    Article  Google Scholar 

  17. Ji SD, Jin YY, Yue YM, Gao SS, Huang YX, Wang L (2013) Effect of temperature on material transfer behavior at different stages of friction stir welded 7075-T6 aluminum alloy. J Mater Sci Technol 29(10):955–960. https://doi.org/10.1016/j.jmst.2013.05.018

    Article  Google Scholar 

  18. Liechty BC, Webb BW (2007) The use of plasticine as an analog to explore material flow in friction stir welding. J Mater Process Technol 184(1-3):240–250. https://doi.org/10.1016/j.jmatprotec.2006.10.049

    Article  Google Scholar 

  19. Mats E, Jin LZ, Sandstrom R (2007) Fatigue properties of friction stir overlap welds. Int J Fatigue 29:57–68. https://doi.org/10.1016/j.ijfatigue.2006.02.052

    Article  Google Scholar 

  20. Rajakumar S, Muralidharan C, Balasubramanian V (2011) Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Mater Des 32(2):535–549. https://doi.org/10.1016/j.matdes.2010.08.025

    Article  Google Scholar 

  21. Scialpi A, Giorgi MD, Filippis LACD, Nobile R, Panella FW (2008) Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials. Mater Des 29(5):928–936. https://doi.org/10.1016/j.matdes.2007.04.006

    Article  Google Scholar 

  22. Zhu WF, Xu C (2008) Simulation of double heat source friction stir welding for aluminum alloy body of high speed train. Trans China Weld Inst 29(10):45–49 China

    Google Scholar 

  23. Wang B (2015) Study on microstructures and mechanical properties of friction stir welding joints of 6082-T6 aluminum alloy. Dissertation, Jilin University, China

  24. Li YP, Sun DQ, Gong WB (2019) Temperature fields in bobbin-tool friction stir welding for 6082-t6 aluminum alloy sheet. Journal of Jilin University (Engineering and Technology Edition), China

  25. Golubev IA, Chernikov EV, Naumov AA, Michailov VG (2015) Temperature distribution and welding distortion measurements after FSW of Al 6082-T6 sheets. Frict Stir Weld Process VIII. https://doi.org/10.1007/978-3-319-48173-9_31

  26. Xu WF, Liu JH (2015) Microstructure evolution along thickness in double-side friction stir welded 7085 Al alloy. Trans Nonferrous Met Soc 25(10):3212–3222. https://doi.org/10.1016/S1003-6326(15)63954-1

    Article  Google Scholar 

  27. Andersen SJ, Zandbergen HW, Jansen J, Traeholt C, Tundal U, Reiso O (2007) The crystal structure of the β″ phase in Al-Mg-Si alloys. Acta Mater 46(9):3283–3298. https://doi.org/10.1016/S1359-6454(97)00493-X

    Article  Google Scholar 

  28. Marioara CD, Andersen SJ, Jansen J, Zandbergen HW (2003) The influence of temperature and storage time at rt on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy. Acta Mater 51(3):789–796. https://doi.org/10.1016/S1359-6454(02)00470-6

    Article  Google Scholar 

  29. Dadbakhsh S, Taheri AK, Smith CW (2010) Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process. Mater Sci Eng A 527(18-19):4758–4766. https://doi.org/10.1016/j.msea.2010.04.017

    Article  Google Scholar 

Download references

Funding

The study was supported by the funding from the Bureau of Science and Technology of Changchun, China, project (17SS024) and the Commission of Development and Reform of Jilin Provincial, China, project (2019C046-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-biao Gong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Gong, Wb. & Cui, H. Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints. Int J Adv Manuf Technol 108, 331–343 (2020). https://doi.org/10.1007/s00170-020-05422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05422-7

Keywords

Navigation