Skip to main content
Log in

Comparison of the full-discretization methods for milling stability analysis by using different high-order polynomials to interpolate both state term and delayed term

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper compares different full-discretization methods for milling stability analysis by using different high-order polynomials to interpolate both state term and delayed term (HFDMs) from the aspects of accuracy and efficiency. The dynamic model of milling process with consideration of regeneration effect is described by time periodic delay-differential equation (DDE) in the state-space. Different high-order interpolation polynomials are used to approximate the state term and delayed term. The state transition matrix is obtained on the basis of direct integration scheme. The rates of convergence of different HFDMs are compared with those of the benchmark methods using different process parameter points, the results indicate that it is difficult to evaluate the accuracy of different HFDMs through the convergence rate analysis of limited process parameter points. Then, mean differences and variances between the referenced and predicted critical depths of cut are employed for accuracy analysis. The 3rd-2nd HFDM is, on the whole, proved to be more accurate than the other methods. The efficiencies of different HFDMs are also verified through time-consuming study for both single degree of freedom (1-DOF) and two degree of freedom (2-DOF) milling system. The 3rd-2nd HFDM is proved to be an efficient method by comparing with the other methods. Besides, the HFDMs are available for predicting the stability lobe diagrams under both large immersion condition and low immersion condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  2. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362. https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  3. Merdol SD, Altintas Y (2004) Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng 126(3):459–466. https://doi.org/10.1115/1.1765139

    Article  Google Scholar 

  4. Balachandran B (2001) Nonlinear dynamics of milling processes. Philos Trans R Soc A Math Phys Eng Sci 359(1781):793–819. https://doi.org/10.1098/rsta.2000.0755

    Article  MATH  Google Scholar 

  5. Balachandran B, Gilsinn D (2005) Non-linear oscillations of milling. Math Comp Model Dyn 11(3):273–290. https://doi.org/10.1080/13873950500076479

    Article  MATH  Google Scholar 

  6. Long XH, Balachandran B, Mann BP (2007) Dynamics of milling processes with variable time delays. Nonlinear Dyn 47(1–3):49–63. https://doi.org/10.1007/s11071-006-9058-4

    Article  MATH  Google Scholar 

  7. Long XH, Balachandran B (2007) Stability analysis for milling process. Nonlinear Dyn 49:349–359. https://doi.org/10.1007/s11071-006-9127-8

    Article  MATH  Google Scholar 

  8. Bayly PV, Halley JE, Mann BP, Davies MA (2003) Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci Eng 125(2):220–225. https://doi.org/10.1115/1.1556860

    Article  Google Scholar 

  9. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61(1):117–141. https://doi.org/10.1002/nme.1061

    Article  MathSciNet  MATH  Google Scholar 

  10. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1–2):334–341. https://doi.org/10.1016/j.jsv.2007.11.040

    Article  Google Scholar 

  11. Butcher EA, Bobrenkov OA, Bueler E, Nindujarla P (2009) Analysis of milling stability by the Chebyshev collocation method: algorithm and optimal stable immersion levels. J Comput Nonlinear Dyn 4(3):031003. https://doi.org/10.1115/1.3124088

    Article  Google Scholar 

  12. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509. https://doi.org/10.1016/j.ijmachtools.2010.01.003

    Article  Google Scholar 

  13. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration method for prediction of milling stability. J Manuf Sci Eng 133(3):031005. https://doi.org/10.1115/1.4004136

    Article  Google Scholar 

  14. Ding Y, Zhu LM, Zhang XJ, Ding H (2013) Stability analysis of milling via the differential quadrature method. J Manuf Sci E Trans ASME 135(4):044502. https://doi.org/10.1115/1.4024539

    Article  Google Scholar 

  15. Li M, Zhang G, Huang Y (2013) Complete discretization scheme for milling stability prediction. Nonlinear Dyn 71:187–199. https://doi.org/10.1007/s11071-012-0651-4

    Article  MathSciNet  Google Scholar 

  16. Niu JB, Ding Y, Zhu LM, Ding H (2014) Runge-Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn 76(1):289–304. https://doi.org/10.1007/s11071-013-1127-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Li Z, Yang Z, Peng Y, Zhu F, Ming X (2015) Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int J Adv Manuf Technol 86(1):943–952. https://doi.org/10.1007/s00170-015-8207-7

    Article  Google Scholar 

  18. Xie QZ (2016) Milling stability prediction using an improved complete discretization method. Int J Adv Manuf Technol 83(5–8):815–821. https://doi.org/10.1007/s00170-015-7626-9

    Article  Google Scholar 

  19. Zhang Z, Li HG, Meng G, Liu C (2015) A novel approach for the prediction of the milling stability based on the Simpson method. Int J Mach Tools Manuf 99:43–47. https://doi.org/10.1016/j.ijmachtools.2015.09.002

    Article  Google Scholar 

  20. Lehotzky D, Insperger T, Khasawneh F, Stepan G (2017) Spectral element method for stability analysis of milling processes with discontinuous time-periodicity. Int J Adv Manuf Technol 89(9–12):2503–2514. https://doi.org/10.1007/s00170-016-9044-z

    Article  Google Scholar 

  21. Zhang XJ, Xiong CH, Ding Y, Ding H (2017) Prediction of chatter stability in high speed milling using the numerical differentiation method. Int J Adv Manuf Technol 89(9–12):2535–2544. https://doi.org/10.1007/s00170-016-8708-z

    Article  Google Scholar 

  22. Qin CJ, Tao JF, Li L, Liu CL (2017) An Adams-Moulton-based method for stability prediction of milling processes. Int J Adv Manuf Technol 89(9–12):3049–3058. https://doi.org/10.1007/s00170-016-9293-x

    Article  Google Scholar 

  23. Jiang S, Sun Y, Yuan X, Liu W (2017) A second-order semi-discretization method for the efficient and accurate stability prediction of milling process. Int J Adv Manuf Technol 92(1–4):583–595. https://doi.org/10.1007/s00170-017-0171-y

    Article  Google Scholar 

  24. Li H, Dai Y, Fan Z (2019) Improved precise integration method for chatter stability prediction of two-DOF milling system. Int J Adv Manuf Technol 101(5–8):1235–1246. https://doi.org/10.1007/s00170-018-2981-y

    Article  Google Scholar 

  25. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50(10):926–932. https://doi.org/10.1016/j.ijmachtools.2010.05.005

    Article  Google Scholar 

  26. Liu YL, Zhang DH, Wu BH (2012) An efficient full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 63:44–48. https://doi.org/10.1016/j.ijmachtools.2012.07.008

    Article  Google Scholar 

  27. Guo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62:61–66. https://doi.org/10.1016/j.ijmachtools.2012.05.001

    Article  Google Scholar 

  28. Ozoegwu CG (2014) Least squares approximated stability boundaries of milling process. Int J Mach Tools Manuf 79:24–30. https://doi.org/10.1016/j.ijmachtools.2014.02.001

    Article  Google Scholar 

  29. Ozoegwu CG, Omenyi SN, Ofochebe SM (2015) Hyper-third order full-discretization methods in milling stability prediction. Int J Mach Tools Manuf 92:1–9. https://doi.org/10.1016/j.ijmachtools.2015.02.007

    Article  Google Scholar 

  30. Ji YJ, Wang XB, Liu ZB, Wang HJ, Yan ZH (2018) An updated full-discretization milling stability prediction method based on the higher-order Hermite-Newton interpolation polynomial. Int J Adv Manuf Technol 95(5–8):2227–2242. https://doi.org/10.1007/s00170-017-1409-4

    Article  Google Scholar 

  31. Tang X, Peng F, Yan R, Gong Y, Li Y, Jiang L (2016) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88(9–12):2357–2368. https://doi.org/10.1007/s00170-016-8923-7

    Article  Google Scholar 

  32. Yan ZH, Wang XB, Liu ZB, Wang DQ, Jiao L, Ji YJ (2017) Third-order updated full-discretization method for milling stability prediction. Int J Adv Manuf Technol 92(5–8):2299–2309. https://doi.org/10.1007/s00170-017-0243-z

    Article  Google Scholar 

  33. Zhou K, Feng P, Xu C, Zhang J, Wu Z (2017) High-order full-discretization methods for milling stability prediction by interpolating the delay term of time-delayed differential equations. Int J Adv Manuf Technol 93(5–8):2201–2214. https://doi.org/10.1007/s00170-017-0692-4

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (Grant No. 51805404), and Open Research Fund Program of Shaanxi Key Laboratory of Non-Traditional Machining (Grant No. 2017SXTZKFJG08) and the Natural Science Basic Research Plan in Shannxi Province of China (Grant No. 2019JQ-147 and No. 2018JQ5127), and the China Postdoctoral Science Foundation (Grant No. 2019M653570), and the Projects of Science and Technology Department in Shaanxi Province (No.2014JM2-5072, No. 2014SZS20-Z02, and No. 2014SZS20-P06), and the Key Laboratory Research Program Funded by Education Department of Shaanxi Province (No. 18JS045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghu Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Combining Eqs. (3), (10), and (18), a discrete mapping can be obtained using 3rd-2nd HFDM as follow

$$ {\mathbf{x}}_{i+1}=\left(\mathbf{I}-{\mathbf{G}}_{37}{\mathbf{B}}_{\mathrm{i}+1}-{\mathbf{G}}_{38}{\mathbf{B}}_{\mathrm{i}}\right)\left[\begin{array}{l}\left({\mathbf{G}}_{35}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{36}{\mathbf{B}}_i+{\mathbf{F}}_0\right){\mathbf{x}}_i+\left({\mathbf{G}}_{33}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{34}{\mathbf{B}}_i\right){\mathbf{x}}_{i-1}+\\ {}\left({\mathbf{G}}_{31}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{32}{\mathbf{B}}_i\right){\mathbf{x}}_{i-2}-\left({\mathbf{H}}_{21}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{22}{\mathbf{B}}_i\right){\mathbf{x}}_{i+2-n}\\ {}-\left({\mathbf{H}}_{23}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{24}{\mathbf{B}}_i\right){\mathbf{x}}_{i+1-n}-\left({\mathbf{H}}_{25}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{26}{\mathbf{B}}_i\right){\mathbf{x}}_{i-n}\end{array}\right] $$
(38)

Combining Eqs. (3), (10), and (21), a discrete mapping can be obtained using 3rd-3rd HFDM as follow

$$ {\mathbf{x}}_{i+1}=\left(\mathbf{I}-{\mathbf{G}}_{37}{\mathbf{B}}_{\mathrm{i}+1}-{\mathbf{G}}_{38}{\mathbf{B}}_{\mathrm{i}}\right)\left[\begin{array}{l}\left({\mathbf{G}}_{35}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{36}{\mathbf{B}}_i+{\mathbf{F}}_0\right){\mathbf{x}}_i+\left({\mathbf{G}}_{33}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{34}{\mathbf{B}}_i\right){\mathbf{x}}_{i-1}+\\ {}\left({\mathbf{G}}_{31}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{32}{\mathbf{B}}_i\right){\mathbf{x}}_{i-2}-\left({\mathbf{H}}_{31}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{32}{\mathbf{B}}_i\right){\mathbf{x}}_{i+3-n}-\\ {}\left({\mathbf{H}}_{33}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{34}{\mathbf{B}}_i\right){\mathbf{x}}_{i+2-n}-\left({\mathbf{H}}_{35}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{36}{\mathbf{B}}_i\right){\mathbf{x}}_{i+1-n}-\\ {}\left({\mathbf{H}}_{37}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{38}{\mathbf{B}}_i\right){\mathbf{x}}_{i-n}\end{array}\right] $$
(39)

Combining Eqs. (3), (10), and (24), a discrete mapping can be obtained using 3rd-4th HFDM as follow

$$ {\mathbf{x}}_{i+1}=\left(\mathbf{I}-{\mathbf{G}}_{37}{\mathbf{B}}_{\mathrm{i}+1}-{\mathbf{G}}_{38}{\mathbf{B}}_{\mathrm{i}}\right)\left[\begin{array}{l}\left({\mathbf{G}}_{35}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{36}{\mathbf{B}}_i+{\mathbf{F}}_0\right){\mathbf{x}}_i+\left({\mathbf{G}}_{33}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{34}{\mathbf{B}}_i\right){\mathbf{x}}_{i-1}+\\ {}\left({\mathbf{G}}_{31}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{32}{\mathbf{B}}_i\right){\mathbf{x}}_{i-2}-\left({\mathbf{H}}_{41}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{42}{\mathbf{B}}_i\right){\mathbf{x}}_{i+4-n}-\\ {}\left({\mathbf{H}}_{43}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{44}{\mathbf{B}}_i\right){\mathbf{x}}_{i+3-n}-\left({\mathbf{H}}_{45}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{46}{\mathbf{B}}_i\right){\mathbf{x}}_{i+2-n}-\\ {}\left({\mathbf{H}}_{47}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{48}{\mathbf{B}}_i\right){\mathbf{x}}_{i+1-n}-\left({\mathbf{H}}_{49}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{410}{\mathbf{B}}_i\right){\mathbf{x}}_{i-n}\end{array}\right] $$
(40)

Combining Eqs. (3), (14), and (18), a discrete mapping can be obtained using 4th-2nd HFDM as follow

$$ {\mathbf{x}}_{i+1}=\left(\mathbf{I}-{\mathbf{G}}_{49}{\mathbf{B}}_{\mathrm{i}+1}-{\mathbf{G}}_{410}{\mathbf{B}}_{\mathrm{i}}\right)\left[\begin{array}{l}\left({\mathbf{G}}_{47}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{48}{\mathbf{B}}_i+{\mathbf{F}}_0\right){\mathbf{x}}_i+\left({\mathbf{G}}_{45}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{46}{\mathbf{B}}_i\right){\mathbf{x}}_{i-1}+\\ {}\left({\mathbf{G}}_{43}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{44}{\mathbf{B}}_i\right){\mathbf{x}}_{i-2}+\left({\mathbf{G}}_{41}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{42}{\mathbf{B}}_i\right){\mathbf{x}}_{i-3}-\\ {}\left({\mathbf{H}}_{21}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{22}{\mathbf{B}}_i\right){\mathbf{x}}_{i+2-n}-\left({\mathbf{H}}_{23}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{24}{\mathbf{B}}_i\right){\mathbf{x}}_{i+1-n}\\ {}-\left({\mathbf{H}}_{25}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{26}{\mathbf{B}}_i\right){\mathbf{x}}_{i-n}\end{array}\right] $$
(41)

Combining Eqs. (3), (14), and (21), a discrete mapping can be obtained using 4th-3rd HFDM as follow

$$ {\mathbf{x}}_{i+1}=\left(\mathbf{I}-{\mathbf{G}}_{49}{\mathbf{B}}_{\mathrm{i}+1}-{\mathbf{G}}_{410}{\mathbf{B}}_{\mathrm{i}}\right)\left[\begin{array}{l}\left({\mathbf{G}}_{47}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{48}{\mathbf{B}}_i+{\mathbf{F}}_0\right){\mathbf{x}}_i+\left({\mathbf{G}}_{45}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{46}{\mathbf{B}}_i\right){\mathbf{x}}_{i-1}+\\ {}\left({\mathbf{G}}_{43}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{44}{\mathbf{B}}_i\right){\mathbf{x}}_{i-2}+\left({\mathbf{G}}_{41}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{42}{\mathbf{B}}_i\right){\mathbf{x}}_{i-3}-\\ {}\left({\mathbf{H}}_{31}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{32}{\mathbf{B}}_i\right){\mathbf{x}}_{i+3-n}-\left({\mathbf{H}}_{33}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{34}{\mathbf{B}}_i\right){\mathbf{x}}_{i+2-n}-\\ {}\left({\mathbf{H}}_{35}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{36}{\mathbf{B}}_i\right){\mathbf{x}}_{i+1-n}-\left({\mathbf{H}}_{37}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{38}{\mathbf{B}}_i\right){\mathbf{x}}_{i-n}\end{array}\right] $$
(42)

Combining Eqs. (3), (14), and (24), a discrete mapping can be obtained using 4th-4th HFDM as follow

$$ {\mathbf{x}}_{i+1}=\left(\mathbf{I}-{\mathbf{G}}_{49}{\mathbf{B}}_{\mathrm{i}+1}-{\mathbf{G}}_{410}{\mathbf{B}}_{\mathrm{i}}\right)\left[\begin{array}{l}\left({\mathbf{G}}_{47}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{48}{\mathbf{B}}_i+{\mathbf{F}}_0\right){\mathbf{x}}_i+\left({\mathbf{G}}_{45}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{46}{\mathbf{B}}_i\right){\mathbf{x}}_{i-1}+\\ {}\left({\mathbf{G}}_{43}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{44}{\mathbf{B}}_i\right){\mathbf{x}}_{i-2}+\left({\mathbf{G}}_{41}{\mathbf{B}}_{i+1}+{\mathbf{G}}_{42}{\mathbf{B}}_i\right){\mathbf{x}}_{i-3}-\\ {}\left({\mathbf{H}}_{41}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{42}{\mathbf{B}}_i\right){\mathbf{x}}_{i+4-n}-\left({\mathbf{H}}_{43}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{44}{\mathbf{B}}_i\right){\mathbf{x}}_{i+3-n}-\\ {}\left({\mathbf{H}}_{45}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{46}{\mathbf{B}}_i\right){\mathbf{x}}_{i+2-n}-\left({\mathbf{H}}_{47}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{48}{\mathbf{B}}_i\right){\mathbf{x}}_{i+1-n}\\ {}\left({\mathbf{H}}_{49}{\mathbf{B}}_{i+1}+{\mathbf{H}}_{410}{\mathbf{B}}_i\right){\mathbf{x}}_{i-n}\end{array}\right] $$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Zhang, C., Jiang, X. et al. Comparison of the full-discretization methods for milling stability analysis by using different high-order polynomials to interpolate both state term and delayed term. Int J Adv Manuf Technol 108, 571–588 (2020). https://doi.org/10.1007/s00170-020-05328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05328-4

Keywords

Navigation