Skip to main content
Log in

High-order full-discretization methods for milling stability prediction by interpolating the delay term of time-delayed differential equations

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The full-discretization method (FDM) has been proven effective for prediction on the regenerative chatter in many papers. However, the previous studies towards FDM just focused on high-order Lagrange interpolation for state term of time-delayed differential equations (DDEs), which formulates the dynamics model in milling process. It is well known that the discretization error caused by the delay term of DDEs would transmit to the state term inevitably; higher-order Lagrange interpolation for delay term is thus vital. In this paper, second-order, third-order, and fourth-order full-discretization methods using Lagrange interpolation for the delay term of DDEs (DFDMs) were firstly proposed. Then, influence on the accuracy, computational efficiency, and convergence rate of the proposed DFDMs was discussed in detail as the change of interpolation order. It was found that rise in accuracy and convergence rate of the proposed DFDM nearly stopped when the interpolation order for delay term was up to fourth order. Next, some researches on 2-degree-of-freedom (2-DOF) of dynamic system was studied and the results show that the proposed method using fourth-order Lagrange interpolation for the delay term of DDEs (4th DFDM) was effective. Finally, this paper verified the 4th DFDM by experiment and analyzed the prediction error of 4th DFDM, which may be caused by the modeling process of cutting force. The proposed DFDMs are developed to find a better method, which can update the existing FDM and make regenerative chatter’s prediction more efficient and precise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koenigsberger F, Tlusty J (1970) Machine tool structures. Pergamon Press, London

    Google Scholar 

  2. Sridhar R, Hohn RE, Long GW (1968) A stability algorithm for the general milling process. ASME J Eng Ind 90(2):330–334. doi:10.1115/1.3604637

    Article  Google Scholar 

  3. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann Manuf Technol 44(1):357–362. doi:10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  4. Tang WX, Song QH, Yu SQ, Sun SS, Li BB, Du B, Ai X (2009) Prediction of chatter stability in high-speed finishing end milling considering multi-mode dynamics. J Mater Process Technol 209(5):2585–2591. doi:10.1016/j.jmatprotec.2008.06.003

    Article  Google Scholar 

  5. Gradišek J, Kalveram M, Insperger T, Weinert K, Stépán G, Govekar E, Grabec I (2005) On stability prediction for milling. Int J Mach Tools Manuf 45(7–8):769–781. doi:10.1016/j.ijmachtools.2004.11.015

    Article  Google Scholar 

  6. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling—part I: general formulation. J Dyn Syst Meas Control 120(1):22–30. doi:10.1115/1.2801317

    Article  Google Scholar 

  7. Insperger T, Stépán G (2002) Semi-discretization method for delayed systems. Int J Numer Methods Eng 55:503–518. doi:10.1002/nme.505

    Article  MathSciNet  MATH  Google Scholar 

  8. Insperger T, Stépán G (2004) Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng 61:117–141. doi:10.1002/nme.1061

    Article  MathSciNet  MATH  Google Scholar 

  9. Insperger T, Stépán G, Turi J (2008) On the higher-order semi-discretizations for periodic delayed systems. J Sound Vib 313(1–2):334–341. doi:10.1016/j.jsv.2007.11.040

    Article  Google Scholar 

  10. Ahmadi K, Ismail F (2012) Modeling chatter in peripheral milling using the semi discretization method. CIRP J Manuf Sci Technol 5(2):77–86. doi:10.1016/j.cirpj.2012.03.001

    Article  Google Scholar 

  11. Ding Y, Zhu LM, Zhang XJ, Ding H (2011) Numerical integration method for prediction of milling stability. J Manuf Sci Eng 133. doi:10.1115/1.4004136

  12. Liang XG, Yao ZQ, Luo L, Hu J (2013) An improved numerical integration method for predicting milling stability with varying time delay. Int J Adv Manuf Technol 68(9–12):1967–1976. doi:10.1007/s00170-013-4813-4

    Article  Google Scholar 

  13. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(5):502–509. doi:10.1016/j.ijmachtools.2010.01.003

    Article  Google Scholar 

  14. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) Second-order full-discretization method for milling stability prediction. Int J Mach Tools Manuf 50(10):926–932. doi:10.1016/j.ijmachtools.2010.05.005

    Article  Google Scholar 

  15. Quo Q, Sun YW, Jiang Y (2012) On the accurate calculation of milling stability limits using third-order full-discretization method. Int J Mach Tools Manuf 62:61–66. doi:10.1016/j.ijmachtools.2012.05.001

    Article  Google Scholar 

  16. Ozoegwu CG, Omenyi SN, Ofochebe SM (2015) Hyper-third order full-discretization methods in milling stability prediction. Int J Mach Tools Manuf 92:1–9. doi:10.1016/j.ijmachtools.2015.02.007

    Article  Google Scholar 

  17. Liu YL, Fischer A, Eberhard P, Wu BH (2015) A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations. Acta Mech Sinica 31(3):406–415. doi:10.1007/s10409-015-0397-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang XW, Peng FY, Yan R, Gong YH, Li YT, Jiang LL (2016) Accurate and efficient prediction of milling stability with updated full-discretization method. Int J Adv Manuf Technol 88(9–12):2357–2368. doi:10.1007/s00170-016-8923-7

    Google Scholar 

  19. Li ZQ, Yang ZK, Peng YR, Zhu F, Ming XZ (2015) Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method. Int J Adv Manuf Technol 86(1–4):943–952. doi:10.1007/s00170-015-8207-7

    Google Scholar 

  20. Xie QZ (2015) Milling stability prediction using an improved complete discretization method. Int J Adv Manuf Technol 83(5–8):815–821. doi:10.1007/s00170-015-7626-9

    Google Scholar 

  21. Bayly PV, Mann BP, Schmitz TL, Peters DA, Stepan G, Insperger T (2002) Effects of radial immersion and cutting direction on chatter instability in end-milling. Paper presented at the ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans

  22. Kuang J, Cong Y (2005) Stability of numerical methods for delay differential equations. Science Press, Beijing

    Google Scholar 

  23. Insperger T (2010) Full-discretization and semi-discretization for milling stability prediction: some comments. Int J Mach Tools Manuf 50(7):658–662. doi:10.1016/j.ijmachtools.2010.03.010

    Article  MathSciNet  Google Scholar 

  24. Zhao MX, Balachandran B (2001) Dynamics and stability of milling process. Int J Solids Struct 38:2233–2248. doi:10.1016/S0020-7683(00)00164-5

    Article  MATH  Google Scholar 

  25. Long XH, Balachandran B (2010) Stability of up-milling and down-milling operations with variable spindle speed. J Vib Control 16(7–8):1151–1168. doi:10.1177/1077546309341131

    Article  MathSciNet  MATH  Google Scholar 

  26. Yue C, Liu XL, Liang SY (2016) A model for predicting chatter stability considering contact characteristic between milling cutter and workpiece. Int J Adv Manuf Technol 88(5–8):2345–2354. doi:10.1007/s00170-016-8953-1

    Google Scholar 

  27. Balachandran B (2001) Nonlinear dynamics of milling process. Philos Trans R Soc Lond A 359(1781):793–819. doi:10.1098/rsta.2000.0755

    Article  MATH  Google Scholar 

  28. Balachandran B, Gilsinn D (2005) Non-linear oscillations of milling. Math Comput Model Dyn Syst 11(3):273–290. doi:10.1080/13873950500076479

    Article  MATH  Google Scholar 

  29. Long XH, Balachandran B (2007) Stability analysis for milling process. Nonlinear Dyn 49(3):349–359. doi:10.1007/s11071-006-9127-8

    Article  MATH  Google Scholar 

  30. Moradi H, Vossoughi G, Movahhedy MR (2014) Bifurcation analysis of nonlinear milling process with tool wear and process damping: sub-harmonic resonance under regenerative chatter. Int J Mech Sci 85:1–19. doi:10.1016/j.ijmecsci.2014.04.011

    Article  Google Scholar 

  31. Tyler CT, Troutman JR, Schmitz TL (2016) A coupled dynamics, multiple degree of freedom process damping model, part 2: milling. Precis Eng 46:73–80. doi:10.1016/j.precisioneng.2016.03.018

    Article  Google Scholar 

  32. Wang JJ, Uhlmann E, Oberschmidt D, Sung CF, Perfilov I (2016) Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping. CIRP Ann Manuf Technol 65(1):113–116. doi:10.1016/j.cirp.2016.04.088

    Article  Google Scholar 

  33. Tyler CT, Troutman J, Schmitz TL (2015) Radial depth of cut stability lobe diagrams with process damping effects. Precis Eng 40:318–324. doi:10.1016/j.precisioneng.2014.11.004

    Article  Google Scholar 

  34. Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Process Technol 209(17):5766–5776. doi:10.1016/j.jmatprotec.2009.06.009

    Article  Google Scholar 

  35. Li ZY, Sun YW, Guo DM (2016) Chatter prediction utilizing stability lobes with process damping in finish milling of titanium alloy thin-walled workpiece. Int J Adv Manuf Technol 89(9–12):2663–2674. doi:10.1007/s00170-016-9834-3

    Google Scholar 

  36. Budak E, Tunç LT, Alan S, Özgüven HN (2012) Prediction of workpiece dynamics and its effects on chatter stability in milling. CIRP Ann Manuf Technol 61(1):339–342. doi:10.1016/j.cirp.2012.03.144

    Article  Google Scholar 

  37. Liu YL, Wu BH, Ma JJ, Zhang DH (2016) Chatter identification of the milling process considering dynamics of the thin-walled workpiece. Int J Adv Manuf Technol 89(5). doi:10.1007/s00170-016-9190-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

Stability prediction method based on interpolating DDEs’ delay term was proposed.

High-order Lagrange interpolating for delay term was calculated to improve efficiency.

The proposed method proved to be more efficient and precise from numerical analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Feng, P., Xu, C. et al. High-order full-discretization methods for milling stability prediction by interpolating the delay term of time-delayed differential equations. Int J Adv Manuf Technol 93, 2201–2214 (2017). https://doi.org/10.1007/s00170-017-0692-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0692-4

Keywords

Navigation