Skip to main content
Log in

An approach to partition workpiece CAD model towards 5-axis support-free 3D printing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a new method to fabricate workpieces using a 5-axis printing equipment with similar movement way of 5-axis milling machine tools. The method includes two main steps: (i) CAD model is partitioned into several sub-parts using a gravity effect partition method simulating the material-falling process when the model is stacked along the Z direction. In our processing plan, every sub-part has a slice direction. Before printing a sub-part, we rotate A axis and C axis so that its slice direction exactly coincides with the Z axis positive direction and then materials are stacked along the slice direction; (ii) these sub-parts are sorted with printing-base constraint and interference-free constraint. The two constraints, respectively, mean that the previously printed sub-parts are used as the printing bases of subsequently printed sub-parts; there is no interference between printed sub-parts and the printer head. These partition and sort principles have been generalized as an optimization model to satisfy printing-base constraint, interference-free constraint, and shortest empty printing path constraint. Our printing processing-plan can be regarded as a process to solve the optimization model. We have successfully generated sub-part sequences for some CAD models with large overhangs and complex structures to verify the printing processing-plan method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Livesu M, Ellero S, Martinez J, Lefebvre S, Attene M (2017) From 3D models to 3D prints: an overview of the processing pipeline. Comput Graph Forum 36(2):537–564

    Article  Google Scholar 

  2. Wei X, Qiu S, Zhu L, Feng R, Tian Y, Xi J, Zheng Y (2018) Toward Support-Free 3D Printing: A Skeletal Approach for Partitioning Models. IEEE Trans Vis Comput Graph 24(10):2799–2812

    Article  Google Scholar 

  3. Dai C, Wang CL, Wu C, Lefebvre S, Fang X, Liu Y (2018) Support-free volume printing by multi-axis motion. ACM Trans Graph 37(4):134

    Article  Google Scholar 

  4. Bahnini I, Rivette M, Rechia A, Siadat A, Elmesbahi A (2018) Additive manufacturing technology: the status, applications, and prospects. Int J Adv Manuf Technol 97(1):147–161

    Article  Google Scholar 

  5. Fang M, Chandra S, Park CB (2008) Building three-dimensional objects by deposition of molten metal droplets. Rapid Prototyp J 14(1):44–52

    Article  Google Scholar 

  6. Spencer JD, Dickens PM, Wykes CM (1998) Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng B J Eng Manuf 212(3):175–182

    Article  Google Scholar 

  7. Shen H, Ye X, Fu J (2018) Research on the flexible support platform for fused deposition modeling. Int J Adv Manuf Technol 97(12):3205–3221

    Google Scholar 

  8. Hildebrand K, Bickel B, Alexa M (2013) Orthogonal slicing for additive manufacturing. Comput Graph 37(6):669–675

    Article  Google Scholar 

  9. Keating S, Oxman N (2013) Compound fabrication: A multi-functional robotic platform for digital design and fabrication. Robot Comput Integr Manuf 29(6):439–448

    Article  Google Scholar 

  10. Song P, Deng B, Wang Z, Dong Z, Li W, Fu C, Liu L (2016) CofiFab: coarse-to-fine fabrication of large 3D objects. ACM Trans Graph 35(4):45–58

    Article  Google Scholar 

  11. Pan Y, Zhou C, Chen Y, Partanen J (2014) Multitool and multi-axis computer numerically con-trolled accumulation for fabricating conformal features on curved surfaces. J Manuf Sci Eng 136(3):031007–031019

    Article  Google Scholar 

  12. Marsh G (2011) Automating aerospace composites production with fiber placement. Reinf Plast 55(3):32–37

    Article  Google Scholar 

  13. Wu R, Peng H, Marschner S (2016) Printing arbitrary meshes with a 5DOF wireframe printer. ACM Trans Graph 35(4):101–115

    Google Scholar 

  14. Huang Y, Zhang J, Hu X, Song G, Liu Z, Yu L, Liu L (2016) FrameFab: robotic fabrication of frame shapes. ACM Trans Graph 35(6):1–11

    Google Scholar 

  15. Repetier. https://www.repetier.com/

  16. Cura. https://ultimaker.com/en/pro

  17. Luo L, Baran I, Rusinkiewicz S, Matusik W (2012) Chopper: Partitioning Models into 3D-Printable Parts. ACM Trans Graph 31(6):234–246

    Google Scholar 

  18. Herholz P, Matusik W, Alexa M (2015) Approximating Free-form Geometry with Height Fields for Manufacturing. Comput Graph Forum 34(2):239–251

    Article  Google Scholar 

  19. Hu R, Li H, Hao Z, Cohen D (2014) Approximate pyramidal shape decomposition. ACM Trans Graph 33(6):1–12

    Google Scholar 

  20. Gao W, Zhang Y, Nazzetta DC, Ramani K, Cipra RJ (2015) RevoMaker: Enabling multi-directional and functionally-embedded 3D printing using a rotational cuboidal platform. Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. New York: ACM 2015, pp 437-446

  21. Wu C, Dai C, Fang G, Liu Y, Wang CL (2017) RoboFDM: A robotic system for support-free fabrication using FDM. IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE2017, pp 1175-1180

  22. Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph 22(3):954–1007

    Article  Google Scholar 

  23. Katz S, Leifman G, Tal A (2005) Mesh segmentation using feature point and core extraction. Vis Comput 21(8-10):649–658

    Article  Google Scholar 

  24. Ji Z, Liu L, Chen Z, Chen Z, Wang G (2006) Easy Mesh Cutting. Comput Graph Forum 32(3):283–291

    Article  Google Scholar 

  25. Liu R, Zhang H (2007) Mesh Segmentation via Spectral Embedding and Contour Analysis. Comput Graph Forum 26(3):385–394

    Article  MathSciNet  Google Scholar 

  26. Golovinskiy A, Funkhouser TA (2008) Randomized cuts for 3D mesh analysis. ACM Trans Graph 27(5):1–12

    Article  Google Scholar 

  27. Chen X, Golovinskiy A, Funkhouser T (2009) A benchmark for 3D mesh segmentation. ACM Trans Graph 28(3):73–85

    Article  Google Scholar 

  28. Kaick OV, Fish N, Kleiman Y, Asafi S, Cohen D (2014) Shape Segmentation by Approximate Convexity Analysis. ACM Trans Graph 34(1):1–11

    Article  Google Scholar 

  29. Hao J, Fang L, Williams RE (2011) An efficient curvature-based partitioning of large-scale STL models. Rapid Prototyp J 17(2):116–127

    Article  Google Scholar 

  30. Attene M (2015) Shapes in a box: Disassembling 3D objects for efficient packing and fabrication. Comput Graph Forum 34(8):64–76

    Article  Google Scholar 

  31. Yao M, Chen Z, Luo L, Wang R, Wang H (2015) Level-set-based partitioning and packing optimization of a printable model. ACM Trans Graph 34(6):1–11

    Article  Google Scholar 

  32. Vanek J, Galicia JAG, Benes B, Měch R, Carr N, Stava O, Miller GS (2015) PackMerger: A 3D Print Volume Optimizer. Comput Graph Forum 33(6):322–332

    Article  Google Scholar 

  33. Ding Y, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44(1):67–76

    Article  Google Scholar 

  34. Wang X, Zhang H, Wang G, Wu L (2008) Multi-axis Path Planning for Hybrid Plasma Deposition and Milling Based on Slicing Characteristics. International Conference on Intelligent Robotics and Applications: Intelligent Robotics and Applications. China: Wuhan, pp 225-234

  35. Ding D, Pan Z, Cuiuri D, Li H, Larkin N, Duin S (2016) Automatic multi-direction slicing algorithms for wire based additive manufacturing 37(2):139-150

  36. Oleg I, Gershon E, Dan H, Ron W, Kim M (2005) Precise Global Collision Detection in Multi-Axis NC-Machining. Comput Aided Des 37(9):909–920

    Article  Google Scholar 

  37. Yu J, Wang C (2013) Method for discriminating geometric feasibility in assembly planning based on extended and turning interference matrix. Int J Adv Manuf Technol 67(8):1867–1882

    Article  Google Scholar 

  38. Kim YJ, Elber G, Bartoň M, Pottmann H (2015) Precise gouging-free tool orientations for 5-axis CNC machining. Comput Aided Des 58(2):220–229

    Article  Google Scholar 

  39. Wang N, Tang K (2007) Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Comput Aided Des 39(10):841–852

    Article  Google Scholar 

  40. Pan C, Smith S, Smith G (2005) Determining interference between parts in CAD STEP files for automatic assembly planning. J Comput Inf Sci Eng 5(1):56–62

    Article  Google Scholar 

  41. Gao S, Zhao W, Lin H, Yang F, Chen X (2010) Feature suppression based CAD mesh model simplification. Comput Aided Des 42(12):1178–1188

    Article  Google Scholar 

  42. Shi J, Liu J, Ning R, Hou W (2013) A collisions evaluation method in virtual environment for collaborative assembly. J Netw Comput Appl 36(6):1523–1530

    Article  Google Scholar 

  43. Liu M, Liu YS, Ramani K (2009) Computing global visibility maps for regions on the boundaries of polyhedra using Minkowski sums. Comput Aided Des 41(9):668–680

    Article  Google Scholar 

  44. Zhang X, Chan KC, Wang CL, Wong KC (2015). Computing stable contact interface for customized surgical JIGS. IEEE International Conference on Robotics and Automation (ICRA). New York: IEEE, pp 6160-6166

  45. Chakraborty D, Reddy BA, Choudhury AR (2008) Extruder path generation for curved layer fused deposition modeling. Comput Aided Des 40(2):235–243

    Article  Google Scholar 

  46. Allen RJA, Trask RS (2015) An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot. Addit Manuf 8(1):78–87

    Article  Google Scholar 

  47. Ezair B, Fuhrmann S, Elber G (2018) Volumetric covering print-paths for additive manufacturing of 3D models. Comput Aided Des 100(1):1–13

    Article  MathSciNet  Google Scholar 

  48. Lee Y, Lee S, Shamir A, Cohen D, Seidel HP (2004). Intelligent mesh scissoring using 3D snakes. Proceedings of 12th Pacific Conference on Computer Graphics and Applications Los Angeles: IEEE. 279-287

Download references

Funding

This project is supported by National Natural Science Foundation of China (Grant No. 51975281). Jiangsu Jiuyu Machinery Limited Company presents equipment for the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Liu or Lei Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, L., Li, D. et al. An approach to partition workpiece CAD model towards 5-axis support-free 3D printing. Int J Adv Manuf Technol 106, 683–699 (2020). https://doi.org/10.1007/s00170-019-04495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04495-3

Keywords

Navigation