Skip to main content
Log in

Effects of WC grain size and Co content on microscale wear behavior of micro end mills in aluminum alloy 7075 machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The effects of cemented carbide materials on cutting edge fracture mechanism of micro end mills in aluminum alloy 7075 machining are investigated. A series of micro milling experiments on the tool wear were conducted. The surface morphologies of micro end mills were observed, and the end teeth flank wear length and tool total cutting edge length reduction were measured. The results showed that the Co content and WC grain size of cemented carbides have significant effects on tool wear and cutting performance of the micro end mill. With increase of WC grain size, the tool end teeth flank wear length increases and the total cutting edge length reduction of the mill obviously increases. Thus, the micro end mill with finer grain size presents better wear resistance. However, with increase of Co content, the micro end mill exhibits less wear resistance. This can be explained that the adsorption energy between Co atom and Al atom become larger based on first principle calculation of adsorption energy between cemented carbides and aluminum alloy. The Co binder of tool material is dragged off by frequent fall off of built-up edge, resulting in more loss of Co element. Thus, the strength of the tool is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Davim JP, Maranh OC, Jackson MJ, Cabral G, Grácio J (2008) FEM analysis in high speed machining of aluminium alloy (Al7075-0) using polycrystalline diamond (PCD) and cemented carbide (K10) cutting tools. Int J Adv Manuf Technol 39(11-12):1093–1100

    Article  Google Scholar 

  2. Lei X, Shen B, Sun F (2015) Optimization of diamond coated microdrills in aluminum alloy 7075 machining: a case study. Diam Relat Mater 54(1):79–90

    Article  Google Scholar 

  3. Li P, Oosterling A, Hoogstrate M, Langen H, Schmidt R (2011) Design of micro square endmills for hard milling applications. Int J Adv Manuf Technol 57:859–870

    Article  Google Scholar 

  4. Upadhyaya A, Sarathy D, Wagner G (2001) Advances in sintering of hard metals. Mater Design 22(6):499–506

    Article  Google Scholar 

  5. Llanes L, Torres Y, Anglada M (2002) On the fatigue crack growth behavior of WC–Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity. Acta Materialia 50(9):2381–2393

    Article  Google Scholar 

  6. Guo Z, Xiong J, Yang M, Dong G, Wan W (2012) Tool wear mechanism of WC–5TiC–10Co ultrafine cemented carbide during AISI 1045 carbon steel cutting process. Int J Refract Met Hard Mater 35(1):262–269

    Article  Google Scholar 

  7. Kai E, Takemoto S, Masao Y (2011) Fabrication and cutting performance of cemented tungsten carbide micro-cutting tools. Precis Eng 35:547–553

    Article  Google Scholar 

  8. Jawaid A, Che-Haron C, Abdullah A (1999) Tool wear characteristics in turning of titanium alloy Ti-6246. J Mater Process Technol 92–93(3):329–334

    Article  Google Scholar 

  9. Pirso J, Letunovitš S, Viljus M (2004) Friction and wear behaviour of cemented carbides. Wear 257(3–4):257–265

    Article  Google Scholar 

  10. Saito H, Iwabuchi A, Shimizu T (2006) Effects of Co content and WC grain size on wear of WC cemented carbide. Wear 261(2):126–132

    Article  Google Scholar 

  11. Chen J, Liu W, Deng X, Wu S (2016) Tool life and wear mechanism of WC–5TiC–0.5VC–8Co cemented carbides inserts when machining HT250 gray cast iron. Ceram Int 42(8):10037–10044

    Article  Google Scholar 

  12. Kadirgama K, Abou-El-Hossein K, Noor M, Sharma K, Mohammad B (2011) Tool life and wear mechanism when machining hastelloy C-22HS. Wear 270(3–4):258–268

    Article  Google Scholar 

  13. Oliaei S, Karpat Y (2016) Influence of tool wear on machining forces and tool deflections during micro milling. Int J Adv Manuf Technol 84(9-12):1–18

    Article  Google Scholar 

  14. List G, Nouari M, Géhin D, Gomez S, Manaud J, Petitcorps Y, Girot F (2005) Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 259(7):1177–1189

    Article  Google Scholar 

  15. Wang X, Kwon P (2014) WC/Co tool wear in dry turning of commercially pure aluminium. J Manuf Sci E-T Asme 136(3):031006

    Article  Google Scholar 

  16. Chen M, Chen N, Guo Y, Wu C, Wang X (2016) Study on the carbide tool wear mechanisms in micro milling stair-shape target of LiF crystal. Int J Adv Manuf Technol 84(5-8):1163–1175

    Google Scholar 

  17. Konyashin I, Ries B (2014) Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. part II: Laboratory performance tests on rock cutting and drilling. Int J Refract Met Hard Mater 45:230–237

    Article  Google Scholar 

  18. Konyashin I, Ries B (2014) Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part I: ASTM wear tests. Int J Refract Met Hard Mater 46:12–19

    Article  Google Scholar 

  19. Cantero J, Díaz-Álvarez J, Miguélez M, Marín N (2013) Analysis of tool wear patterns in finishing turning of Inconel 718. Wear 297(1-2):885–894

    Article  Google Scholar 

  20. Torres Y, Tarrago J, Coureaux D, Tarrés E, Roebuck B, Chan P, James M, Liang B, Tillman M, Viswanadham R, Mingard K, Mestra A, Llanes L (2014) Fracture and fatigue of rock bit cemented carbides: mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading. Int J Refract Met Hard Mater 45(45):179–188

    Article  Google Scholar 

  21. Sheikh-Ahmad J, Bailey J (1999) The wear characteristics of some cemented tungsten carbides in machining particleboard. Wear 225(1):256–266

    Article  Google Scholar 

  22. Nouari M, List G, Girot F, Coupard D (2003) Experimental analysis and optimization of tool wear in dry machining of aluminium alloys. Wear 255(7):1359–1368

    Article  Google Scholar 

  23. Gómez-Parra A, Álvarez-Alcón M, Salguero J, Batista M, Marcos M (2013) Analysis of the evolution of the built-up edge and built-up layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear 302(1–2):1209–1218

    Article  Google Scholar 

  24. Amin A, Ismail A, Khairusshima M (2007) Effectiveness of uncoated WC–Co and PCD inserts in end milling of titanium alloy—Ti–6Al–4 V. J Mater Proc Tech 192–193(5):147–158

    Article  Google Scholar 

  25. Lee HC, Gurland J (1978) Hardness and deformation of cemented tungsten carbide. Mat Sci Eng 33(1):125–133

    Article  Google Scholar 

  26. Golovchan VT, Litoshenko NV (2010) The stress–strain behavior of WC-Co hardmetals. Comp Mater Sci 49(3):593–597

    Article  Google Scholar 

  27. Liu W, Chen ZH, Wang HP, Zhang ZJ, Yao L, Chen D (2016) Small energy multi-impact and static fatigue properties of cemented carbides. Powder Metall Ment C 55(5-6):1–7

    Google Scholar 

  28. Zhou L, Wang CY, Qin Z (2009) Tool wear characteristics in high-speed milling of graphite using a coated carbide microendmill. Proc IME B J Eng Manufact 223(3):267–277

    Article  Google Scholar 

  29. Kindermann P, Schlund P, Sockel HG, Herr M, Heinrich W, Görting K, Schleinkoferc U (1999) High-temperature fatigue of cemented carbides under cyclic loads. Int J Refract Met Hard Mater 17(1–3):55–68

    Article  Google Scholar 

  30. Li A, Zhao J, Wang D, Gao X, Tang H (2013) Three-point bending fatigue behavior of WC–Co cemented carbides. Mater Design 45:271–278

    Article  Google Scholar 

  31. Liu B, Zhang Y, Ouyang S (2000) Study on the relation between structural parameters and fracture strength of WC-Co cemented carbides. Mater Chem Phys 62(1):35–43

    Article  Google Scholar 

  32. Torres Y, Anglada M, Llanes L (2001) Fatigue mechanics of WC–Co cemented carbides. Int J Refract Met Hard Mater 19(4):341–348

    Article  Google Scholar 

  33. Tarragó JM, Roa JJ, Valle V, Marshall JM, Llanes L (2015) Fracture and fatigue behavior of WC–Co and WC–CoNi cemented carbides. Int J Refract Met Hard Mater 49:184–191

    Article  Google Scholar 

  34. Klünsner T, Marsoner S, Ebner R, Pippan R, Glätzle J, Püschel A (2010) Effect of microstructure on fatigue properties of WC-Co hard metals. Procedia Eng 2(1):2001–2010

    Article  Google Scholar 

  35. Sánchez JM, Rubio E, Álvarez M, Sebastián MA, Marcos M (2005) Microstructural characterisation of material adhered over cutting tool in the dry machining of aerospace aluminium alloys. J Mater Process Technol 164(20):911–918

    Article  Google Scholar 

  36. Greenwood JA (1997) Adhesion of elastic spheres. Proc R Soc Lond A 453(1961):1277–1297

    Article  MathSciNet  Google Scholar 

  37. Östberg G, Buss K, Christensen M, Norgren S, Andrén HO, Mari D, Wahnströma G, Reineckc I (2006) Mechanisms of plastic deformation of WC–Co and Ti(C, N)–WC–Co. Int J Refract Met Hard Mater 24(1):145–154

    Article  Google Scholar 

  38. Östberg G, Farooq MU, Christensen M, Andrén HO, Klement U, Wahnström G (2006) Effect of ∑2 grain boundaries on plastic deformation of WC–Co cemented carbides. Mater Sci Eng A 416(1-2):119–125

    Article  Google Scholar 

  39. Kendall K (2002) The adhesion and surface energy of elastic solids. J Phys D 4(8):1186

    Article  Google Scholar 

Download references

Funding

This work was supported by National Basic Research Program of China (No. 2015CB059900), National Natural Science Foundation of China (No.51575049) and Basic Research Program (No. DEDPHF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Liang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Wang, X., Liang, Z. et al. Effects of WC grain size and Co content on microscale wear behavior of micro end mills in aluminum alloy 7075 machining . Int J Adv Manuf Technol 104, 2401–2413 (2019). https://doi.org/10.1007/s00170-019-04055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04055-9

Keywords

Navigation