Skip to main content
Log in

Damaging of cemented carbide end mill with different grain sizes: experimental and simulation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The main purpose of the current study was to investigate the effects of the size of WC grains on the damage evolution of WC–Co junk mills. The finite element method (FEM) simulation results showed that the fine-grain (FG) tool retained its cutting edges radii longer than the coarse-grain (CG) tool. This event leads to the larger wear rate in the CG tool. Moreover, FEM analysis indicated that through increasing the feeding rate, the wear rate and the cutting forces increased as well. The observation of worn tool surface revealed that the formation of micro-pits, micro-cracks, scratching grooves and broken WC grains was among the common signs of the damage for both CG and FG tools. However, it was found that the defects are more intensive in the CG tool. This can be due to the lower boundary strength and less WC connectivity in the CG milling tool. The finer grains also decreased the mean free path in the Co binder and impeded the micro-cracks propagation in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sugiyama I, Mizumukai Y, Taniuchi T, Okada K, Shirase F, Tanase T, Ikuhara Y, Ymamoto T. Three-dimensional morphology of (W, V)Cx in VC-doped WC–Co hard metals. Scr Mater. 2013;69(6):473.

    Article  CAS  Google Scholar 

  2. Chen J, Liu W, Deng X, Wu S. Tool life and wear mechanism of WC–5TiC–0.5VC–8Co cemented carbides inserts when machining HT250 gray cast iron. Ceram Int. 2016; 42 (8); 10037.

    Article  CAS  Google Scholar 

  3. Kim CS, Massa TR, Rohrer GS. Modeling the influence of orientation texture on the strength of WC–Co composites. J Am Ceram Soc. 2007;90(1):199.

    Article  CAS  Google Scholar 

  4. Guo Y, Wang Y, Gao B, Shi Z, Yuan Z. Rapid diffusion bonding of WC–Co cemented carbide to 40 Cr steel with Ni interlayer: effect of surface roughness and interlayer thickness. Ceram Int. 2016;42(15):16729.

    Article  CAS  Google Scholar 

  5. Amirnasiri A, Parvin N, Haghshenas MS. Dissimilar diffusion brazing of WC–Co to AISI 4145 steel using RBCuZn-D interlayer. J Manuf Process. 2017;28(1):82.

    Article  Google Scholar 

  6. Haghshenas MS, Parvin N, Amirnasiri A. Effect of bonding temperature on microstructure and mechanical properties of WC–Co/steel diffusion brazed joint. Trans Indian Inst Met. 2018;71(3):649.

    Article  CAS  Google Scholar 

  7. Amirnasiri A, Parvin N, Haghshenas MS. Investigation of surface roughness parameter in dissimilar diffusion brazing of WC–Co to AISI 4145 steel. Weld World (forthcoming). 2019. https://doi.org/10.1007/s40194-019-00778-1.

    Article  Google Scholar 

  8. Zhan Z, He N, Li L, Shrestha R, Liu J, Wang S. Precision milling of tungsten carbide with micro PCD milling tool. Int J Adv Manuf Technol. 2015;77(9):2095.

    Article  Google Scholar 

  9. Denkena B, Dittrich MA, Liu Y. A new process chain for recycling of cemented carbide milling tools. Prod Eng. 2018;12(3):547.

    Article  Google Scholar 

  10. Akhtar W, Sun J, Chen W. Effect of machining parameters on surface integrity in high speed milling of super alloy GH4169/Inconel 718. Mater Manuf Processes. 2016;31(5):620.

    Article  CAS  Google Scholar 

  11. Zhao X, Ke W, Zhang S, Zheng W. Potential failure cause analysis of tungsten carbide end mills for titanium alloy machining. Eng Fail Anal. 2016;66:321.

    Article  CAS  Google Scholar 

  12. Niu Z, Jiao F, Cheng K. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools. J Manuf Process. 2018;31:382.

    Article  Google Scholar 

  13. Gilbin A, Fontaine M, Michel G, Thibaud S, Picard P. Capability of tungsten carbide micro-mills to machine hardened tool steel. Int J Precis Eng Manuf. 2013;14(1):23.

    Article  Google Scholar 

  14. Razak NH, Chen ZW, Pasang T. Progression of tool deterioration and related cutting force during milling of 718Plus superalloy using cemented tungsten carbide tools. Int J Adv Manuf Technol. 2016;86(9):3203.

    Article  Google Scholar 

  15. Yong AYL, Seah KHW, Rahman M. Performance of cryogenically treated tungsten carbide tools in milling operations. Int J Adv Manuf Technol. 2007;32(7):638.

    Article  Google Scholar 

  16. Thepsonthi T, Özel T. Experimental and finite element simulation based investigations on micro-milling Ti–6Al–4V titanium alloy: effects of cBN coating on tool wear. J Mater Process Technol. 2013;213(4):532.

    Article  CAS  Google Scholar 

  17. Mokritskii BY, Morozova AV, Usova TI. Results in composite hard-alloy and mill design based on simulation of their operation conditions. Proc Eng. 2017;206:1093.

    Article  Google Scholar 

  18. Hegeman JBJ, De Hosson JT, With G de. Grinding of WC–Co hardmetals. Wear. 2001;248(1):187.

    Article  CAS  Google Scholar 

  19. Zhang Q, To S, Zhao Q, Guo B. Surface damage mechanism of WC/Co and RB-SiC/Si composites under high spindle speed grinding (HSSG). Mater Des. 2016;92:378.

    Article  CAS  Google Scholar 

  20. Gao P, Liang Z, Wang X, Zhou T, Li S, Zhang S, Liu Z. Cutting edge damage in grinding of cemented carbides micro end mills. Ceram Int. 2017;43(14):11331.

    Article  CAS  Google Scholar 

  21. Wu HB, Zhang SJ. 3D FEM simulation of milling process for titanium alloy Ti6Al4V. Int J Adv Manuf Technol. 2014;71(5):1319.

    Article  Google Scholar 

  22. Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains high strain rates and high temperatures. In: 7th International Symposium on Ballistics, The Hague; 1983. 541.

  23. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech. 1985;21(1):31.

    Article  Google Scholar 

  24. Recht RF. Catastrophic thermoplastic shear. J Appl Mech. 1964;31(2):189.

    Article  Google Scholar 

  25. Zorev NN. Interrelationship between shear processes. In: International Research in Production Engineering: Proceedings of the International Production Engineering Research Conference, Pennsylvania; 1963. 42.

  26. Rana S, Kumar A. FEA based design and thermal contact conductance analysis of steel and Al rough surfaces. Int J Appl Eng Res. 2018;13(16):12715.

    Google Scholar 

  27. Okamoto S, Nakazono Y, Otsuka K, Shimoitani Y, Takada J. Mechanical properties of WC/Co cemented carbide with larger WC grain size. Mater Charact. 2005;55(4):281.

    Article  CAS  Google Scholar 

  28. Exner HE, Gurland J. A review of parameters influencing some mechanical properties of tungsten carbide-cobalt alloys. Powder Metall. 1970;13(25):13.

    Article  CAS  Google Scholar 

  29. Saito H, Iwabuchi A, Shimizu T. Effects of Co content and WC grain size on wear of WC cemented carbide. Wear. 2006;261(2):126.

    Article  CAS  Google Scholar 

  30. Ren YH, Zhang B, Zhou ZX. Specific energy in grinding of tungsten carbides of various grain sizes. CIRP Ann. 2009;58(1):299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Amirnasiri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirnasiri, A., Shafiei Haghshenas, M. & Parvin, N. Damaging of cemented carbide end mill with different grain sizes: experimental and simulation. Rare Met. 40, 671–678 (2021). https://doi.org/10.1007/s12598-019-01327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01327-x

Keywords

Navigation