Skip to main content
Log in

Effects of temperature, initial conditions, and roller path on hot spinnability of AZ31 alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present work, effects of the hot spinning process on the spinnability of AZ31 blank to a tubular shape are investigated. The hot spinning process was carried out by an electrical heating system embedded inside the mandrel. Based on the results, the hot spinning below 250 °C led to fracture. At 250 °C, although deformation imposed no fracture, localized thinning limited the spinnability of the alloy. The spinnability was, however, quite well at the temperature range of 300–450 °C. At this range of temperature, it was found that despite different initial microstructures, the initial conditions of the material, i.e., annealing and as-received conditions, have no significant effect on the spinnability. This was attributed to the complete dynamic recrystallization above 300 °C. Regarding the roller path, two paths of linear and nonlinear paths were implemented. The results show that the nonlinear path of the roller failed to produce a sound tube even above 300 °C. Finite element simulations in combination with a ductile fracture criterion were employed to analyze the low spinnability of the AZ31 blank through this path. Based on the results, this path introduces higher longitudinal strain along with the combination of intensive tensile hydrostatic and longitudinal stresses within the workpiece wall. Such deformation conditions, therefore, cause circumferential cracks at the workpiece wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedrich H, Schumann S (2001) Research for a “new age of magnesium” in the automotive industry. J Mater Process Technol 117(3):276–281. https://doi.org/10.1016/S0924-0136(01)00780-4

    Article  Google Scholar 

  2. Joost WJ, Krajewski PE (2017) Towards magnesium alloys for high-volume automotive applications. Scr Mater 128:107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035

    Article  Google Scholar 

  3. Gupta M, Ling SNM (2011) Magnesium, magnesium alloys, and magnesium composites. Wiley

  4. Pan F, Yang M, Chen X (2016) A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J Mater Sci Technol 32(12):1211–1221. https://doi.org/10.1016/j.jmst.2016.07.001

    Article  Google Scholar 

  5. Avedesian MM, Baker H (Eds.) (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM international

  6. Doege E, Drder K (2001) Sheet metal forming of magnesium wrought alloys - formability and process technology. J Mater Process Technol 115(1):14–19. https://doi.org/10.1016/S0924-0136(01)00760-9

    Article  Google Scholar 

  7. Ghandehari Ferdowsi MR, Mazinani M, Ebrahimi GR (2014) Effects of hot rolling and inter-stage annealing on the microstructure and texture evolution in a partially homogenized AZ91 magnesium alloy. J Mater Sci Eng A 606:214–227. https://doi.org/10.1016/j.msea.2014.03.104

    Article  Google Scholar 

  8. Hadadzadeh A, Wells MA, Shaha SK, Jahed H, Williams BW (2017) Role of compression direction on recrystallization behavior and texture evolution during hot deformation of extruded ZK60 magnesium alloy. J Alloys Compd 702:274–289. https://doi.org/10.1016/j.jallcom.2017.01.236

    Article  Google Scholar 

  9. Huang GS, Wang LF, Pan FS, Ma MT (2014) The formability and hot stamping of magnesium alloy sheets. Adv Mater Res 1063:215–218. https://doi.org/10.4028/www.scientific.net/AMR.1063.215

    Article  Google Scholar 

  10. Yang H, Huang L, Zhan M (2010) Coupled thermo-mechanical FE simulation of the hot splitting spinning process of magnesium alloy AZ31. Comput Mater Sci 47(3):857–866. https://doi.org/10.1016/j.commatsci.2009.11.014

    Article  Google Scholar 

  11. Kim HS, Koç M (2008) Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions. J Mater Process Technol 204(1–3):370–383. https://doi.org/10.1016/j.jmatprotec.2007.11.059

    Article  Google Scholar 

  12. Xie H, Wang Q, Liu K, Peng F, Dong X, Wang J (2015) Investigation of influence of direct-current pulses on springback during V-bending of AZ31B magnesium alloy sheet. J Mater Process Technol 219:321–327. https://doi.org/10.1016/j.jmatprotec.2014.12.011

    Article  Google Scholar 

  13. Wong CC, Dean TA, Lin J (2003) A review of spinning, shear forming and flow forming processes. Int J Mach Tools Manuf 43(14):1419–1435. https://doi.org/10.1016/S0890-6955(03)00172-X

    Article  Google Scholar 

  14. Music O, Allwood JM, Kawai K (2010) A review of the mechanics of metal spinning. J Mater Process Technol 210(1):3–23. https://doi.org/10.1016/j.jmatprotec.2009.08.021

    Article  Google Scholar 

  15. Kalpakjian S, Rajagopal S (1982) Spinning of tubes: a review. J Appl Metalwork 2(3):211–223. https://doi.org/10.1007/bf02834039

    Article  Google Scholar 

  16. Xia Q, Xiao G, Long H, Cheng X, Sheng X (2014) A review of process advancement of novel metal spinning. Int J Mach Tools Manuf 85:100–121. https://doi.org/10.1016/j.ijmachtools.2014.05.005

    Article  Google Scholar 

  17. Xia Q, Cheng X, Long H, Ruan F (2012) Finite element analysis and experimental investigation on deformation mechanism of non-axisymmetric tube spinning. Int J Adv Manuf Technol 59(1):263–272. https://doi.org/10.1007/s00170-011-3494-0

    Article  Google Scholar 

  18. Xia QX, Lai ZY, Long H, Cheng XQ (2013) A study of the spinning force of hollow parts with triangular cross sections. Int J Adv Manuf Technol 68(9):2461–2470. https://doi.org/10.1007/s00170-013-4847-7

    Article  Google Scholar 

  19. Hosford WF, Caddell RM (1993) Metal forming: mechanics and metallurgy. Cambridge University Press

  20. Li L-L, Cai Z-Y, Xu H-Q, Wang M, Yu J (2014) Research on AZ31 sheet one-pass hot spinning based on orthogonal experiment design. Int J Adv Manuf Technol 75(5):897–907. https://doi.org/10.1007/s00170-014-6186-8

    Article  Google Scholar 

  21. Fong KS, Wong CC, Atsushi D (2010) Experimental investigation of flaring in the warm flow-forming of AZ31 magnesium cups. Key Engineering Materials, Trans Tech Publ 447:427–431. https://doi.org/10.4028/www.scientific.net/KEM.447-448.427

  22. Cao Z, Wang F, Wan Q, Zhang Z, Jin L, Dong J (2015) Microstructure and mechanical properties of AZ80 magnesium alloy tube fabricated by hot flow forming. Mater Des 67:64–71. https://doi.org/10.1016/j.matdes.2014.11.016

    Article  Google Scholar 

  23. Yoshihara S, Mac Donald B, Hasegawa T, Kawahara M, Yamamoto H (2004) Design improvement of spin forming of magnesium alloy tubes using finite element. J Mater Process Technol 153-154:816–820. https://doi.org/10.1016/j.jmatprotec.2004.04.386

    Article  Google Scholar 

  24. Murata M, Kuboki T, Murai T (2005) Compression spinning of circular magnesium tube using heated roller tool. J Mater Process Technol 162-163:540–545. https://doi.org/10.1016/j.jmatprotec.2005.02.199

    Article  Google Scholar 

  25. Mei Z, He Y, Jing G, Wang X-x (2015) Review on hot spinning for difficult-to-deform lightweight metals. Trans Nonferrous Metals Soc China 25(6):1732–1743. https://doi.org/10.1016/S1003-6326(15)63778-5

    Article  Google Scholar 

  26. Kwak TY, Lim HK, Kim WJ (2016) The effect of 0.5 wt.% Ca addition on the hot compressive characteristics and processing maps of the cast and extruded Mg–3Al–1Zn alloys. J Alloys Compd 658:157–169. https://doi.org/10.1016/j.jallcom.2015.10.193

    Article  Google Scholar 

  27. Gur M, Tirosh J (1982) Plastic flow instability under compressive loading during shear spinning process. J Eng Ind 104:17–22

    Article  Google Scholar 

  28. Mohebbi MS, Akbarzadeh A (2010) Experimental study and FEM analysis of redundant strains in flow forming of tubes. J Mater Process Technol 210(2):389–395. https://doi.org/10.1016/j.jmatprotec.2009.09.028

    Article  Google Scholar 

  29. Zhang D-f, Hu H-j, Pan F-s, Yang M-b, Zhang J-p (2010) Numerical and physical simulation of new SPD method combining extrusion and equal channel angular pressing for AZ31 magnesium alloy. Trans Nonferrous Metals Soc China 20(3):478–483. https://doi.org/10.1016/s1003-6326(09)60165-5

    Article  Google Scholar 

  30. JMatPro the materials property simulation package public release Version 6.1. Sente Software Ltd.

  31. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Oxford

    Google Scholar 

  32. Abaqus analysis user’s manual (2012). ABAQUS Inc Version 6.12

  33. Liu JG, Liu W (2012) Evaluation of seven ductile fracture criteria for failure prediction of AZ31 sheet in warm forming. Adv Mater Res 482-484:1947–1950. https://doi.org/10.4028/www.scientific.net/AMR.482-484.1947

    Article  Google Scholar 

  34. Nguyen D-T, Park J-G, Kim Y-S (2010) Ductile fracture prediction in rotational incremental forming for magnesium alloy sheets using combined kinematic/isotropic hardening model. Metall Mater Trans A 41(8):1983–1994. https://doi.org/10.1007/s11661-010-0235-1

    Article  Google Scholar 

  35. Oyane M, Sato T, Okimoto K, Shima S (1980) Criteria for ductile fracture and their applications. J Mech Work Technol 4(1):65–81. https://doi.org/10.1016/0378-3804(80)90006-6

    Article  Google Scholar 

  36. Cai Z, Chen F, Ma F, Guo J (2016) Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation. J Alloys Compd 670:55–63. https://doi.org/10.1016/j.jallcom.2016.02.033

    Article  Google Scholar 

  37. Prasad YVRK, Rao KP (2008) Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: anisotropy of hot workability. Mater Sci Eng A 487(1):316–327. https://doi.org/10.1016/j.msea.2007.10.038

    Article  Google Scholar 

  38. Atik K, Efe M (2018) Twinning-induced shear banding and its control in rolling of magnesium. Mater Sci Eng A 725:267–273. https://doi.org/10.1016/j.msea.2018.03.121

    Article  Google Scholar 

  39. Klimanek P, Pötzsch A (2002) Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates. Mater Sci Eng A 324(1):145–150. https://doi.org/10.1016/S0921-5093(01)01297-7

    Article  Google Scholar 

  40. Dowling NE (2012) Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson Prentice Hall

  41. Gouveia BPPA, Rodrigues JMC, Martins PAF (2000) Ductile fracture in metalworking: experimental and theoretical research. J Mater Process Technol 101(1):52–63. https://doi.org/10.1016/S0924-0136(99)00449-5

    Article  Google Scholar 

  42. Clift SE, Hartley P, Sturgess CEN, Rowe GW (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32(1):1–17. https://doi.org/10.1016/0020-7403(90)90148-C

    Article  Google Scholar 

  43. Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24(6):1071–1096. https://doi.org/10.1016/j.ijplas.2007.09.004

    Article  MATH  Google Scholar 

  44. Novella MF, Ghiotti A, Bruschi S, Bariani PF (2015) Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars. J Mater Process Technol 222:259–267. https://doi.org/10.1016/j.jmatprotec.2015.01.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sadegh Mohebbi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, M.S., Rahimi pour, M. Effects of temperature, initial conditions, and roller path on hot spinnability of AZ31 alloy. Int J Adv Manuf Technol 103, 377–388 (2019). https://doi.org/10.1007/s00170-019-03528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03528-1

Keywords

Navigation