Skip to main content
Log in

Spinning of tubes: A review

  • Published:
Journal of Applied Metalworking

Abstract

Spinning of tubes involves progressive localized deformation of a cylindrical ring between a rotating mandrel and a roller. The resultant product is a tube whose wall thickness is determined by the gap between the mandrel and roller. The process is also known as shear forming, flow turning, spin forging, rotary extrusion, roll extrusion, flow forming, hydrospinning, rotoforming, and floturning. Spinning of tubes is reviewed herein with the objective of providing an understanding of the basic mechanisms underlying the process,important variables and their influence on the process, some of the simpler tooling techniques that have evolved for specific parts, and the types of parts to which the process has been successfully applied in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Packham: “Metal Spinning and Shear and Flow Forming,”Metallurgia and Metal Forming, June 1976, pp. 168–70; July 1976, pp. 203–06; August 1976, pp. 250–52; September 1976, pp. 281–85.

  2. C. Wick: “Metal Spinning: A Review and Update,”Manufacturing Engineering, January 1978, pp. 73–77.

  3. Metal Deformation Processing, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio, 1966, vol II, report no. 226, pp. 49–66.

  4. “Rotary Metalworking Processes,”Proceedings, First Int. Conf., IFS (Conferences) Ltd., Bedford, U. K., 1979.

  5. K. W. Stalker and K. W. Moore: “Cold Power Spinning Saves Material, Cuts Costs,”American Machinist, May 9, 1955.

  6. “Power Spinning Conical and Tubular Parts,”Product Engineering, August 1956.

  7. J. Genis and W. Mallindine: “Rotary Extrusion Reduces Costs and Saves Material,”Machinery, NY, April 1958, pp. 115–21.

  8. J.H. Peters: “Flow Turning to Increase Strength, Save Weight, and Reduce Costs,” ASME Paper No. 59-A-277, 1959.

  9. L. E. Zwissler: “Spinning Makes Stronger Rocket Cases,”Metal Progress, December 1960.

  10. “Heavy Flow-Forming,”Aircraft Production, November 1962, pp. 374–76.

  11. D.J. Campion: “Spinning and Related Forming Techniques with Particular Reference to Maraging Steel,”Sheet Metal Industries, March 1967, pp. 160–66.

  12. G. E. Gott, J. M. Lynch, and S. M. Jacobs: “Are Shear Spinning and Roll Extrusion Production Processes for Large Parts?”Metal Progress, March 1968, pp. 95–99.

  13. “Case Histories Demonstrate Metal Spinning’s Virtues,”Modern Metals, June 1978, pp. 46–49.

  14. D. H. Pollitt: “The Practice and Potential of Flow Forming Processes,” inRotary Metalworking Processes, Proceedings, First Int. Conf., IFS (Conferences) Ltd., Bedford, U. K., 1979.

  15. “Shear Forming of Thin-Wall Seamless Tubes,”Machinery, January 1964, pp. 120–21.

  16. A. W. Emestus: “Roll Extrusion, A New Metal-Forming Technique,”American Machinist, June 29, 1959, pp. 84–86.

  17. D. L. Corn: “Roll Extruding Precision Seamless Pipe and Tubing,”Metal Progress, June 1977, pp. 28–31. See also “Recent Advances in Roll Extrusion,”Rotary Metalworking Processes, Proceedings,First Int. Conf., IFS (Conferences) Ltd., Bedford, U.K., 1979, pp. 243–50.

  18. S. Rajagopal and S. Kalpakjian: “Internal Shear Forging Processes for Missile Primary Structures,” IIT Research Institute, Final Report under U. S. Army Missile Command Contract No. DAAK40-78-C-0264, July 1981.

  19. J. M. Steichen and R. L. Knecht: “Mechanical Properties of Roll Extruded Nuclear Reactor Piping,” ASME Paper No. 75-PVP-41, 1975.

  20. “Shear Forming: How It Affects Properties,”American Machinist, July 6, 1965, pp. 57–59.

  21. E. S. Jones: “Aus-Shear Forming of Low Alloy Steel Cylinders,” General Electric Co., Cincinnati, Ohio,ca. 1960.

  22. S. Kalpakjian: “An Application of Theory to an Engineering Problem: Power Spinning,”Fundamentals of Deformation Processing, Syracuse University Press, 1964, Chapter IV, pp. 71–103.

  23. E. Thomasett: “Kräfte und Grenzformänderungen beim Abstreckdrücken zylindrischer, Rotationssymmetrisches Hohlkörper aus Aluminium,” Doctoral Dissertation, University of Stuttgart, 1961.

  24. S. Kalpakjian: “An Experimental Study of Plastic Deformation in Power Spinning,”C.I.R.P. Annals, 1962, vol. 10, pp. 58–64.

    Google Scholar 

  25. H. Jacob: “Erfahrungen beim Fliessdrücken zylindrischer Werkstücke,”Fertigungstechnik und Betrieb, March 1962, vol. 12, pp. 169–78.

    Google Scholar 

  26. E. Siebel and K. A. Dröge: “Forces and Material Flow in Spinning,”Werkstattstechnik und Maschinenbau, January 1955, vol. 45, pp. 6–9. (See alsoThe Engineers’ Digest, May 1955, vol. 16, no. 5, pp. 193–95).

    Google Scholar 

  27. S. Kalpakjian: “Maximum Reduction in Power Spinning of Tubes,” Trans. ASME,J. Eng. Ind., 1964, vol. 86, pp. 49–54.

    Google Scholar 

  28. C. H. Wells: “The Control of Buildup and Diametral Growth in Shear Forming,” Trans. ASME,J. Eng. Ind., 1968, vol. 90, pp. 63–70.

    Google Scholar 

  29. H. J. Dreikandt: “Untersuchung über das Drückwalzen zylindrischer Hohlkörper und Beitrag zur Berechnung der gedrückten Fläche und der Dräfte,” University of Stuttgart, 1973.

  30. S. Kalpakjian: “Chevron Fracture in Tube Reduction by Spinning,”Advances in Research on the Strength and Fracture of Materials, Pergamon Press, NY, 1977, vol. 2A, pp. 443–50.

    Google Scholar 

  31. A. K. Cruden: Report No. 341, National Engineering Laboratory, 1968; also M.G. Cockroft inDuctility, ASM, 1968, p. 218.

  32. M. Hayama and H. Kudo: “Analysis of Diametral Growth and Working Forces in Tube Spinning,”Bulletin of the Japan Society of Mechanical Engineers, 1979, vol. 22, pp. 776–84.

    Google Scholar 

  33. M. Hayama and H. Kudo: “Experimental Study of Tube Spinning,”Bulletin of the Japan Society of Mechanical Engineers, 1979, vol. 22, pp. 769–75.

    CAS  Google Scholar 

  34. H. Jacob and F. Garreis: “Rollenanordnung und Rollenform beim Fliessdrücken zylindrischer Körper,”Fertigungstechnik und Betrieb, May 1965, vol. 15, no. 5, pp. 279–83.

    Google Scholar 

  35. H. Jacob and F. Garreis: “Berechnung der uftretenden Kräfte beim Fliessdrücken zylindrischer Hohlkörper,”Fertigungstechnik und Betrieb, August 1964, vol. 14, no. 8, pp. 493–97.

    Google Scholar 

  36. H. Jacob and F. Garreis: “Fliessdrücken mit Schrägstellung der Rollen und deren Auswirkung und den Werkstoffluss und Unformkräfte (Dreh-Umformmaschine)”Fertigungstechnik und Betrieb, January 1966, vol. 16, no. 1, pp. 42–45.

    Google Scholar 

  37. V. I. Eliseev and E. I. Isachenkov: “Selection of Force Parameters when How-Turning Cylindrical Components,”Russian Engineering Journal (Translation of Vestnik Mashinostroeniia), 1969, vol. 49, no. 11, pp. 68–71.

    Google Scholar 

  38. P. Bennich: “Tube Spinning,”Int. Journal Prod. Res., 1976, vol. 14, no. 1, pp. 11–21.

    Article  Google Scholar 

  39. J. A. Bennaton and E. Appleton: “An Experimental Metalforming Machine and Its Application to Cylindrical Flowturning,” inRotary Metalworking Processes, Ref. 4.

  40. T. Rammohan and R. Mishra: “Studies on Power Spinning of Tubes,”Int. Journal Prod. Res., 1972, vol. 10, no. 4, pp. 351–64.

    Article  Google Scholar 

  41. S. Kobayashi and E. G. Thomsen: “Theory of Spin Forging,”C.I.R.P. Annals, 1962, vol. 10, no. 2, pp. 114–23.

    Google Scholar 

  42. S. Kalpakjian: “A Study of the Mechanics of Tube Spinning as Related to Performance,” The Cincinnati Milling Machine Company, Final Report under Project No. F-98060-7, April 1962.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalpakjian, S., Rajagopal, S. Spinning of tubes: A review. J. Applied Metalworking 2, 211–223 (1982). https://doi.org/10.1007/BF02834039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02834039

Keywords

Navigation