Skip to main content
Log in

A framework for augmented reality guidance in industry

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Nowadays, many companies see augmented reality (AR) as an important tool to provide new services related to their products. However, many challenges remain to be solved for the widely adoption of this technology, such as the development of suitable authoring tools and real-time and robust algorithms for the detection and tracking of objects where the virtual annotations will be anchored in the real world. This paper presents a complete framework, called ARgitu, to generate and present virtual and augmented information, including the tools required for the development of new contents. To solve the object detection and tracking in complex industrial environments, we also propose a new monocular method for 3D non-Lambertian object recognition in arbitrary environments. The method is based on the current state-of-the-art chamfer matching approaches with a reduced computational effort while maintaining their accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akinlar C, Topal C (2013) EDCIrcles: A real-time circle detector with a false detection control. Pattern Recogn 46(3):725–740. https://doi.org/10.1016/j.patcog.2012.09.020

    Article  Google Scholar 

  2. Ayad MS, Lee J, Deguet A, Burdette EC, Prince JL (2010) C-arm pose estimation using a set of coplanar ellipses in correspondence. In: 2010 7Th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010 - proceedings, pp 1401–1404. https://doi.org/10.1109/ISBI.2010.5490260

  3. Bay H, Ferrari V, Van Gool L (2005) Wide-baseline stereo matching with line segments. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1:329–336. https://doi.org/10.1109/CVPR.2005.375

    Article  Google Scholar 

  4. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  5. Choi C, Christensen HI (2012) 3D textureless object detection and tracking: an edge-based approach. In: IEEE International Conference on Intelligent Robots and Systems, pp 3877–3884. https://doi.org/10.1109/IROS.2012.6386065

  6. Costa MS, Shapiro LG (2000) 3D object recognition and pose with relational indexing. Comput Vis Image Underst 79(3):364–407. https://doi.org/10.1006/cviu.2000.0865

    Article  MATH  Google Scholar 

  7. Damen D, Bunnun P, Calway A, Mayol-cuevas W (2012) Real-time learning and detection of 3D texture-less objects: a scalable approach. In: Procedings of the British Machine Vision Conference 2012 pp 23.1–23.12. https://doi.org/10.5244/C.26.23

  8. De Ma S (1993) Conics-based stereo, motion estimation, and pose determination. Int J Comput Vis 10(1):7–25. https://doi.org/10.1007/BF01440844

    Article  MathSciNet  Google Scholar 

  9. Douglas DH, Peucker TK (2011) Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Classics in Cartography: Reflections on Influential Articles from Cartographica 10:15–28. https://doi.org/10.1002/9780470669488.ch2

    Article  Google Scholar 

  10. Drummond T, Cipolla R (2002) Real-time visual tracking of complex structures. IEEE Trans Pattern Anal Mach Intell 24(7):932–946. https://doi.org/10.1109/TPAMI.2002.1017620

    Article  Google Scholar 

  11. Ellis T, Abbood A, Brillault B (1992) Ellipse detection and matching with uncertainty. Image Vis Comput 10(5):271–276. https://doi.org/10.1016/0262-8856(92)90041-Z

    Article  Google Scholar 

  12. Fiorentino M, Uva AE, Gattullo M, Debernardis S, Monno G (2014) Augmented reality on large screen for interactive maintenance instructions. Comput Ind 65(2):270–278 . https://doi.org/10.1016/j.compind.2013.11.004. http://www.sciencedirect.com/science/article/pii/S0166361513002340

    Article  Google Scholar 

  13. Fite-Georgel P (2011) Is there a reality in industrial augmented reality?. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp 201–210. https://doi.org/10.1109/ISMAR.2011.6092387

  14. Garon M, Lalonde JF (2017) Deep 6-DOF tracking. IEEE Trans Vis Comput Graph 23(11):2410–2418. https://doi.org/10.1109/TVCG.2017.2734599

    Article  Google Scholar 

  15. Hanson R, Falkenström W, Miettinen M (2017) Augmented reality as a means of conveying picking information in kit preparation for mixed-model assembly. Comput Ind Eng 113(April):570–575. https://doi.org/10.1016/j.cie.2017.09.048

    Article  Google Scholar 

  16. Hinterstoisser S, Cagniart C, Ilic S, Sturm P, Navab N, Fua P, Lepetit V (2012) Gradient response maps for real-time detection of textureless objects. IEEE Trans Pattern Anal Mach Intell 34(5):876–888. https://doi.org/10.1109/TPAMI.2011.206

    Article  Google Scholar 

  17. Hinterstoisser S, Lepetit V, Ilic S, Fua P, Navab N (2010) Dominant orientation templates for real-time detection of texture-less objects. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 2257–2264. https://doi.org/10.1109/CVPR.2010.5539908

  18. Imperoli M, Pretto A (2015) D2co: Fast and robust registration of 3d textureless objects using the directional chamfer distance. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9163:316–328. https://doi.org/10.1007/978-3-319-20904-3_29

    Google Scholar 

  19. Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspaces. In: ISMAR - IEEE International Symposium on Mixed and Augmented Reality

  20. Li Y, Wang G, Ji X, Xiang Y, Fox D (2018) DeepIM: Deep Iterative Matching for 6D Pose Estimation. In: European Conference on Computer Vision (ECCV). https://doi.org/10.1007/978-3-030-01231-1_42

  21. Liu MY, Tuzel O, Veeraraghavan A, Chellappa R (2010) Fast directional chamfer matching. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 1696–1703. https://doi.org/10.1109/CVPR.2010.5539837

  22. Liu MY, Tuzel O, Veeraraghavan A, Taguchi Y, Marks TK, Chellappa R (2012) Fast object localization and pose estimation in heavy clutter for robotic bin picking. Int J Robot Res 31(8):951–973. https://doi.org/10.1177/0278364911436018

    Article  Google Scholar 

  23. Liu Z, Marlet R (2012) Virtual line descriptor and Semi-Local graph matching method for reliable feature correspondence. In: Procedings of the British Machine Vision Conference 2012 pp 16.1–16.11. https://doi.org/10.5244/C.26.16

  24. Wang L, Neumann U, You S (2009) Wide-baseline image matching using Line Signatures. In: 2009 IEEE 12Th International Conference on Computer Vision, iccv, pp 1311–1318. https://doi.org/10.1109/ICCV.2009.5459316

  25. Makris S, Karagiannis P, Koukas S, Matthaiakis AS (2016) Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann Manuf Technol 65(1):61–64. https://doi.org/10.1016/j.cirp.2016.04.038

    Article  Google Scholar 

  26. Micusik B, Wildenauer H (2015) Descriptor free visual indoor localization with line segments. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 07-12-June, pp 3165–3173. https://doi.org/10.1109/CVPR.2015.7298936

  27. Mur-Artal R, Montiel JM, Tardos JD (2015) ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans Robot 31(5):1147–1163. https://doi.org/10.1109/TRO.2015.2463671

    Article  Google Scholar 

  28. Palmarini R, Erkoyuncu JA, Roy R, Torabmostaedi H (2018) A systematic review of augmented reality applications in maintenance. Robot Comput Integr Manuf 49(March 2017):215–228. https://doi.org/10.1016/j.rcim.2017.06.002

    Article  Google Scholar 

  29. Peng X (2015) Combine color and shape in real-time detection of texture-less objects. Comput Vis Image Underst 135:31–48. https://doi.org/10.1016/j.cviu.2015.02.010

    Article  Google Scholar 

  30. Pillai S, Leonard J (2015) Monocular SLAM supported object recognition. In: Robotics: Science and Systems (RSS), pp 34–42. https://doi.org/10.15607/RSS.2015.XI.034

  31. Platonov J, Heibel H, Meier P, Grollmann B (2007) A mobile markerless AR system for maintenance and repair. In: Proceedings - ISMAR 2006: Fifth IEEE and ACM International Symposium on Mixed and Augmented Reality, pp 105–108. https://doi.org/10.1109/ISMAR.2006.297800

  32. Ragni M, Perini M, Setti A, Bosetti P (2018) ARTOol Zero: Programming trajectory of touching probes using augmented reality. Comput Ind Eng 124(July):462–473. https://doi.org/10.1016/j.cie.2018.07.026

    Article  Google Scholar 

  33. Rambach J, Pagani A, Stricker D (2017) Augmented things: enhancing AR applications leveraging the internet of things and universal 3D object tracking. In: Adjunct Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2017, July, pp 103–108. https://doi.org/10.1109/ISMAR-Adjunct.2017.42

  34. Schops T, Enge J, Cremers D (2014) Semi-dense visual odometry for AR on a smartphone. In: ISMAR 2014 - IEEE International Symposium on Mixed and Augmented Reality - Science and Technology 2014, proceedings, pp 145–150. https://doi.org/10.1109/ISMAR.2014.6948420

  35. Tekin B, Sinha SN, Fua P (2017) Real-Time Seamless single shot 6D object pose prediction. In: Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2018.00038

  36. Tombari F, Franchi A, Di L (2013) BOLD Features to detect texture-less objects. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1265–1272. https://doi.org/10.1109/ICCV.2013.160

  37. Usabiaga J, Erol A, Bebis G, Boyle R, Twombly X (2009) Global hand pose estimation by multiple camera ellipse tracking. Mach Vis Appl 21(1):1–15. https://doi.org/10.1007/s00138-008-0137-z

    Article  Google Scholar 

  38. Verhagen B, Timofte R, Van Gool L (2014) Scale-invariant line descriptors for wide baseline matching. In: 2014 IEEE Winter Conference on Applications of Computer Vision, WACV 2014, pp 493–500. https://doi.org/10.1109/WACV.2014.6836061

  39. Wang G, Wu J, Ji Z (2008) Single view based pose estimation from circle or parallel lines. Pattern Recogn Lett 29(7):977–985. https://doi.org/10.1016/j.patrec.2008.01.017

    Article  Google Scholar 

  40. Wang Y, Zhang S, Wan B, He W, Bai X (2018) Point cloud and visual feature-based tracking method for an augmented reality-aided mechanical assembly system. International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-018-2575-8

  41. Wang Y, Zhang S, Yang S, He W, Bai X, Zeng Y (2017) A LINE-MOD-based markerless tracking approachfor AR applications. Int J Adv Manuf Technol 89(5-8):1699–1707. https://doi.org/10.1007/s00170-016-9180-5

    Article  Google Scholar 

  42. Wang Z, Liu H, Wu F (2009) HLD: A Robust descriptor for line matching. In: Proceedings - 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics, CAD/Graphics 2009, pp 128–133. https://doi.org/10.1109/CADCG.2009.5246918

  43. Xiang Y, Schmidt T, Narayanan V, Fox D (2017) PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: Robotics: Science and systems (RSS). https://doi.org/10.15607/RSS.2018.XIV.019

  44. Zhang L, Koch R (2013) An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J Vis Commun Image Represent 24(7):794–805. https://doi.org/10.1016/j.jvcir.2013.05.006

    Article  Google Scholar 

  45. Zhao C, Zhao H, Lv J, Sun S, Li B (2016) Multimodal image matching based on multimodality robust line segment descriptor. Neurocomputing 177:290–303. https://doi.org/10.1016/j.neucom.2015.11.025

    Article  Google Scholar 

  46. Zhu J, Ong SK, Nee AYC (2012) An authorable context-aware augmented reality system to assist the maintenance technicians. The International Journal of Advanced Manufacturing Technology

  47. Zhu Z, Branzoi V, Wolverton M, Murray G, Vitovitch N, Yarnall L, Acharya G, Samarasekera S, Kumar R (2014) AR-Mentor: augmented reality based mentoring system. In: ISMAR 2014 - IEEE International Symposium on Mixed and Augmented Reality - Science and Technology 2014, Proceedings, pp 17–22. https://doi.org/10.1109/ISMAR.2014.6948404

Download references

Acknowledgments

We would like to thank Ekin S. Coop, specially Uraitz Ormaza, Leire Carazo, Kepa Huerta, and Ruben Sordo for their help and support during the development of this project. We would also like to thank the authors of the EDCircles algorithm for providing us access to the implementation.

Funding

This research project has been supported by the Education, Linguistic Politics and Culture Department of the Basque Government under the Predoctoral Program and the ARgitu Hazitek project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iker Aguinaga.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubizarreta, J., Aguinaga, I. & Amundarain, A. A framework for augmented reality guidance in industry. Int J Adv Manuf Technol 102, 4095–4108 (2019). https://doi.org/10.1007/s00170-019-03527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03527-2

Keywords

Navigation