Skip to main content
Log in

Conics-based stereo, motion estimation, and pose determination

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Stereo vision, motion and structure parameter estimation, and pose determination are three important problems in 3-D computer vision. The first step in all of these problems is to choose and to extract primitives and their features in images. In most of the previous work, people usually use edge points or straight line segments as primitives and their local properties as features. Few methods have been presented in the literature using more compact primitives and their global features. This article presents an approach using conics as primitives. For stereo vision, a closed-form solution is provided for both establishing the correspondence of conics in images and the reconstruction of conics in space. With this method, the correspondence is uniquely determined and the reconstruction is global. It is shown that the method can be extended for higher degree (degree≥3) planar curves.For motion and structure parameter estimation, it is shown that, in general, two sequential images of at least three conics are needed in order to determine the camera motion. A complicated nonlinear system must be solved in this case. In particular, if we are given two images of a pair of coplanar conics, a closed-form solution of camera motion is presented. In a CAD-based vision system, the object models are available, and this makes it possible to recognize 3-D objects and to determine their poses from a single image.For pose determination, it is shown that if there exist two conics on the surface of an object, the object's pose can be determined by an efficient one-dimensional search. In particular, if two conics are coplanar, a closed-form solution of the object's pose is presented.

Uniqueness analysis and some experiments with real or synthesized data are presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ayache and B. Faverjon, Efficient registration of stereo images by matching graph descriptions of edge segments,Intern. J. Comput. Vis. 1(2):107–131, 1987.

    Google Scholar 

  2. N. Ayache and F. Lustman, Trinocular stereo vision for robotics,IEEE Trans. Patt. Anal. Mach Intell. 13(1):73–85, 1991.

    Google Scholar 

  3. H.H. Baker, and T.O. Binford, Depth from edge and intensity based stereo,Proc. 7th Intern. Joint Conf. Artif. Intell., Vancouver, Canada, pp. 631–636, 1981.

  4. G. Borgefors, Hierarchical chamber matching: A parametric edge matching algorithm,IEEE Trans. Patt. Anal. Mach. Intell. 10(6):849–865, 1988.

    Google Scholar 

  5. A.T. Brint and M. Brady, Stereo matching curves,Image Vis. Comput. 8(1):50–55, 1990.

    Google Scholar 

  6. J.F. Canny, A computational approach to edge detection,IEEE Trans. Patt. Anal. Mach. Intell. 8(6):679–698, 1986.

    Google Scholar 

  7. E.W. Chionh, R.N. Goldman, and J.R. Miller, Using multivariate resultant to find the intersection of three quadric surfaces,ACM Trans. Graphics 10(4):378–400, 1991.

    Google Scholar 

  8. L.S. Davis, Z. Wu and H. Sun, Contour based motion estimation,Comput. Vis. Graph. Image Process. 23:313–326, 1983.

    Google Scholar 

  9. R. Deriche, Using Canny's criteria to derive a recursive implemented optical edge detector,Intern. J. Comput. Vis. 1(2):167–187, 1987.

    Google Scholar 

  10. M. Dhome, M. Richetin, J.T. Lapresté and G. Rives, Determination of the attitude of 3-D object from a single perspective view,IEEE Trans. Patt. Anal. Mach. Intell. PAMI 11(12): 1265–1278, 1989.

    Google Scholar 

  11. O.D. Faugeras and F. Lustman, Motion and structure from motion in a piecewise planar environment,Inern. J. Patt. Recog. Artif. Intell. 2(3):485–508, 1988.

    Google Scholar 

  12. O.D. Faugeras and S. Maybank, Motion from point matches: Multiplicity of solutions.Intern. J. Comput. Vis. 4:225–246, 1990.

    Google Scholar 

  13. D.A. Forsyth, J.L. Munday, A. Zisserman and C.M. Brown, Invariance: a new framework for vision,Proc. 3rd Intern. Conf. Comput. Vis. Osaka, pp. 598–605, 1990.

  14. D.A. Forsyth, J.L. Munday, A. Zisserman and C.M. Brown, Projective invariant representation using implicit algebraic curves,Image and Vis. Comput. 9(2):130–136, 1991.

    Google Scholar 

  15. W.E.L. Grimson, Computational experiments with a feature based stereo algorithm,IEEE Trans. Patt. Anal. Mach. Intell. PAMI 7(1):17–34, 1985.

    Google Scholar 

  16. R.M. Haralick, Digital step edges from zero crossings of second directional derivatives,IEEE Trans. Patt. Anal. Mach. Intell. PAMI 6(1):58–68, 1984.

    Google Scholar 

  17. R.M. Haralick and Y.H. Chu, Solving Camera Parameters from the perspective projection of a parameterized curve,Patt. Recog. 17(6):637–645, 1984.

    Google Scholar 

  18. R. Horaud and T. Skordas, Stereo correspondence through feature grouping and maximal cliques,IEEE Trans. Patt. Anal. Mach. Intell. PAMI 11 (11):1168–1180, 1989.

    Google Scholar 

  19. R.A. Horn and C.R. Johnson,Matrix Analysis. Cambridge University Press: Cambridge, 1985.

    Google Scholar 

  20. P.V.C. Hough, Method and means for recognizing complex pattern, U.S. Patent, 3069654, 1962.

  21. D. Huttenlocher and S. Ullman, Object recognition using alignment,Proc. 1st Intern. Conf. Comput. Vis., London, pp. 102–111, 1987.

  22. D.J. Kriegman and J. Ponce, On recognizing and positioning curved 3-D objects from image contours,IEEE Trans. Patt. Anal. Mach. Intell. PAMI-12(12): 1127–1137, 1990.

    Google Scholar 

  23. Y. Liu and T.S. Huang, Estimation of rigid body motion using straight line correspondences: Further results,Proc. 8th Intern. Conf. Patt. Recog., Paris, pp. 306–307, 1986.

  24. H.C. Longuet-Higgins, A computer algorithm for reconstructing a scene from two perspective projections,Nature 293:133–135, 1981.

    Google Scholar 

  25. H.C. Longuet-Higgins, Configurations that defeat the eight-point algorithm mental processes,Studies in Cognitive Science, MIT Press: Cambridge, MA, pp. 395–397, 1987.

    Google Scholar 

  26. Y. Lu and R.C. Jain, Behavior of edges in scale space,IEEE Trans. Patt. Anal. Mach. Intell. PAMI 11 (4):337–356, 1989.

    Google Scholar 

  27. S.D. Ma, S.H. Si and Z.Y. Chen, Quadric curve based stereo,Proc. IAPR Conf., Hague, The Netherlands, 1992.

  28. S.D. Ma, Recognizing and positioning 3-D object based on quadratic curves, 2nd Pacific RIM Intern Conf. on AI, Korea, 1992.

  29. F. Macaulay,The Algebraic Theory of Modular Systems. Cambridge, England: Cambridge Univ. Press, 1916.

    Google Scholar 

  30. D. Marr and T. Poggio, A computational theory of human stereo vision,Proc. Roy. Soc. London B 204:301–328, 1979.

    Google Scholar 

  31. G. Medioni and R. Nevatia, Segment-based stereo matching,Comput. Vis. Graph. Image Process. 31:2–18, 1985.

    Google Scholar 

  32. E.L. Merritt, Explicity three point resection in space,Photogrammetric Engineering 15(4):649–655, 1949.

    Google Scholar 

  33. H.H. Nagel, Image sequences, ten years—From phenomenology towards a theoretical foundation,Proc. 8th Intern. Conf. Patt. Recog., Paris, pp. 1174–1185, 1986.

  34. N.M. Nasrabadi, Y. Lin and J.L. Chiang, Stereo vision correspondence using a multi-channel graph matching technique,Proc. Intern. Conf. Robot. Autom., Philadelphia, pp. 1804–1808, 1988.

  35. G. Poggio and T. Poggio, The analysis of steropsis,Annu. Rev. Neurosci., 7:379–412, 1984.

    Google Scholar 

  36. T. Poggio, V. Torre and C. Koch, Computational vision and regularization theory,Nature, 317:314–319, 1985.

    Google Scholar 

  37. J. Porrill and S. Pollard, Curve matching and stereo calibration,Image Vis. Comput. 9(1):45–50, 1991.

    Google Scholar 

  38. L. Robert and O. Faugeras, Curve-based stereo: Figural continuity and curvature,Proc. Hawaii, pp. 57–61, 1991.

  39. G. Salmon,Modern Higher Algebra. Hodges, Smith: Dublin Ireland, 1866.

    Google Scholar 

  40. H.S. Sawhney, J. Oliensis and A.R. Hanson, Description and reconstruction from image trajectories of rotational motion,Proc. 3rd Intern. Conf. Comput. Vis., Osaka, pp. 494–498, 1990.

  41. J.G. Semple and G.T. Kneebone,Algebraic Projective Geometry. Clarendon Press: Oxford, 1952. Reprinted 1979.

    Google Scholar 

  42. S.H. Shi, Recognition and pose determination of the curved surface objects, Master thesis, National Pattern Recognition Laboratory, Chinese Academy of Sciences, Beijing, China, 1991.

    Google Scholar 

  43. J. Shun and S. Castan, An optical linear operator for edge detection,Proc. Conf. Comput. Vis. Patt. Recog., Miami, FL., pp. 109–114, 1986.

  44. T.M. Silberberg, D.A. Harwood and L.S. Davis, Object recognition using oriented model points,Comput. Vis., Graph Image Process., 35:47–71, 1986.

    Google Scholar 

  45. M. Spetsakis and J. Aloimonos, Structure from motion using line correspondences,Intern. J. Comput. Vis., 4(3):171–183, 1990.

    Google Scholar 

  46. R. Srinivasan, K.R. Ramakrishnan and P.S. Sastry, A contour-based stereo algorithm,Proc. 1st Intern. Conf. Comput. Vis., London, pp. 677–681, 1987.

  47. I.D. Svalbe, Natural representations for straight lines and the hough transform on discrete arrays,Trans. Patt. Anal. Mach. Intell., 11(9):941–950, 1989.

    Google Scholar 

  48. J. Tang and S.D. Ma, Straight line and conics detection,Tech. Rep., National Pattern Recognition Laboratory, Chinese Academy of Sciences, Beijing, 1991.

    Google Scholar 

  49. R.Y. Tsai and T.S. Huang, Estimating three-dimensional motion parameters of a rigid planar patch,IEEE Trans. Acoust., Speech, Sign. Process., 29:1147–1152, 1981.

    Google Scholar 

  50. R.Y. Tsai, T.S. Huang and W.L. Zhu, Estimating three-dimensional motion parameters of a rigid planar patch II: Singular value decomposition,IEEE Trans. Acoust. Speech Sign. Process., 30:525–534, 1982.

    Google Scholar 

  51. R.Y. Tsai and T.S. Huang, Uniqueness and estimation of 3-D motion parameters of rigid bodies with curved surfaces,IEEE Trans. Patt. Anal. Mach. Intell., 6(1):13–27, 1984.

    Google Scholar 

  52. G.Q. Wei, Z. He and S.D. Ma, Fusing the matching and motion estimation of rigid point patterns,Proc. IEEE Robot. Autom., Ohio, pp. 2017–2021, 1990.

  53. J. Weng, T.S. Huang and N. Ahuja, Motion and structure from line correspondence: Closed-form solution, uniqueness and optimization,IEEE Trans. Patt. Anal. Mach. Intell. 14(3):318–336, 1992.

    Google Scholar 

  54. B.C. Yen and T.S. Huang, Determining 3-D motion and structure of a rigid body using straight line correspondences,Image Sequence Processing and Dynamic Scene Analysis, Springer-Verlag: Heidelberg Germany, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ma, S. Conics-based stereo, motion estimation, and pose determination. Int J Comput Vision 10, 7–25 (1993). https://doi.org/10.1007/BF01440844

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01440844

Keywords

Navigation