Skip to main content
Log in

Effect of generatrix profile on single-point incremental forming parameters

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The single-point incremental forming is one of two modes of the incremental sheet forming process. It is the most used in the manufacture of parts for small series and prototypes in various sectors such as aeronautics, biomedical field, and art pieces. In this work, two geometries of parts are investigated at the same process parameters (rotation speed, feed rate, step increment, sheet thickness, and tool diameter). The experimental tests are made with a CNC spinner milling machine. The blank sheet of mild steel is formed by means of a hemispherical tool with a 10-mm diameter. The forming tool follows the desired spiral path that is determined by a CAD model. The main objective of this paper is to study the effects of the generatrix profile for two shapes of a truncated cone (straight and circular generatrix) on forming forces, thickness distribution, shape accuracy, and surface roughness of the formed shape. Besides, a coefficient of shape is introduced from experimental and analytical vertical forces. The experimental results show that a better roughness surface quality is obtained in forming a straight generatrix and that a more uniform thickness distribution of the blank is obtained after thinning and shaping a circular generatrix. In order to examine the geometric accuracy of the parts, a Next Engine 3D scanner is used to rebuild the developed surfaces again and to make a comparison between the programmed and scanned profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leszak E (1967) Apparatus and process for incremental dieless forming. United States Patent Office US3342051

  2. Matsubara S (2001) A computer numerically controlled dieless incremental forming of a sheet metal. Proc Inst Mech Eng Part BJ Eng Manuf 215:959–966

    Article  Google Scholar 

  3. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114

    Article  Google Scholar 

  4. Saidi B, Boulila A, Ayadi M, Nasri R (2015) Experimental force measurements in single point incremental sheet forming SPIF. Mech Ind. doi:10.1051/meca/2015018

  5. Benmessaoud R (2014) A tool path generation method for the multi-pass incremental forming process investigation. Int J Adv Res Comp Sci Softw Eng 4(5):1035–1044

    Google Scholar 

  6. Nicolas D (2009) Formage incrémental de tole d'aluminium: étude du procédé à l'aide de la mesure de champs et identication de modèles de comportement.PhD. thesis, Toulouse-III-Paul-Sabatier University, France

  7. McAnulty T, Jeswiet J, Doolan M (2017) Formability in single point incremental forming: a comparative analysis of the state of the art. CIRP J Manuf Sci Technol 16:43–54

    Article  Google Scholar 

  8. Xu Z, Gao L, Hussain G, Cui Z (2010) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46(9):1113–1118

    Google Scholar 

  9. Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130:42–46

    Article  Google Scholar 

  10. Durante M, Formisano A, Langella A (2011) Observations on the influence of tool-sheet contact conditions on an incremental forming process. J Mater Eng Perform 20(6):941–946

    Article  Google Scholar 

  11. Li Y, Liu Z, Daniel WJT, Meehan PA (2014) Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process. Mater Manuf Process 29:121–128

    Article  Google Scholar 

  12. Lu B, Fang Y, Xu DK, Chen J, Ou H, Moser NH, Cao J (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tools Manuf 85:14–29

    Article  Google Scholar 

  13. Hussain G, Khan HR, Gao L, Hayat N (2013) Guidelines for tool-size selection for single-point incremental forming of an aerospace alloy. Mater Manuf Process 28:324–329

    Article  Google Scholar 

  14. Fang Y, Lu B, Chen J, Xu DK, Ou H (2014) Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol 214:1503–1515

    Article  Google Scholar 

  15. Thibaud S, Ben Hmida R, Richard F, Malécot P (2012) A fully parametric toolbox for the simulation of single point incremental sheet forming process: numerical feasibility and experimental validation. Simul Model Pract Th 29:32–43

    Article  Google Scholar 

  16. Bagudanch I, Garcia-Romeu ML, Sabater M (2016) Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost. J Clean Prod 112:1013–1024

    Article  Google Scholar 

  17. Ambrogio G, Duflou J, Filice L, Aerens R (2007) Some considerations on force trends in incremental forming of different materials. 10th ESAFORM Conference on material forming ( HYPERLINK “http://AIP.Scitation.Org/journal/apc” AIP Conference proceedings ), American Institute of Physics

  18. Duflou J, Tunçkol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189(1–3):65–72

    Article  Google Scholar 

  19. Petek A, Kuzman K, Kopaè J (2009) Deformations and forces analysis of single point incremental sheet metal forming. Arch Mater Sci Eng 35:107–116

    Google Scholar 

  20. Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Inter J Adv Manuf Technol 46:969–982

    Article  Google Scholar 

  21. Pérez-Santiago R, Bagudanch I, García-Romeu ML (2011) Force modeling in single point incremental forming of variable wall angle components. Key Eng Mater 473:833–840

    Article  Google Scholar 

  22. Aerens R, Duflou JR, Eyckens P, Van Bael A (2009) Inter J Mater Form 2:25–28

    Article  Google Scholar 

  23. Bagudanch I, Centeno G, Vallellano C, Garcia-Romeu ML (2013) Forming force in Single Point Incremental Forming under different bending conditions. MESIC The Manufacturing Engineering Society International Conference. Elsevier Ltdp. 354–360

  24. Junk S, Hirt G, Bambach M, Chouvalova I, Ames J. (2003). Flexible CNC flexible CNC incremental sheet forming: process evaluation and simulation. Conferência Nacional de Conformação de Chapas, 15, Outubro Porto Alegre/RS, Brasil, ed. Schaeffer L, Gráfica e Editora Brasul Ltda p. 30-38.

  25. Thakur R, Kumar N (2015) Optimization of surface roughness and improving profile accuracy in SPIF (single point incremental forming) process. Inter J Curr Eng Technol 5:2048–2052

    Google Scholar 

  26. Gulati V, Aryal A, Katyal P, Goswami A (2016) Process parameters optimization in single point incremental forming. J Inst Eng India Ser C 97:185–193

    Article  Google Scholar 

  27. Cerro I, Maidagan E, Arana J, Rivero A, Rodríguez PP (2006) Theoretical and experimental analysis of the dieless incremental sheet forming process. J Mater Process Technol 177(1–3):404–408

    Article  Google Scholar 

  28. Blaga A, Oleksik V (2013) A study on the influence of the forming strategy on the main strains, thickness reduction, and forces in a single point incremental forming process. Adv Mater Sci Eng. doi:10.1155/2013/382635

  29. Alves ML, Silva MB, Alves LM, Martins PAF (2009) On the formability, geometrical accuracy and surface quality of sheet metal parts produced by SPIF.Proc. SPIE 7375ICEM 2008: International Conference on Experimental Mechanics

  30. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191:390–395

    Article  Google Scholar 

  31. Durante M, Formisano A, Langella A, Capece Minutolo FM (2009) The influence of tool rotation on an incremental forming process. J Mater Process Technol 209(9):4621–4626

    Article  Google Scholar 

  32. Rauch M, Hascoet JY, Hamann JC, Plenel Y (2009) Tool path programming optimization for incremental sheet forming applications. Comput Aided Design 41:877–885

    Article  Google Scholar 

  33. Cavaler LCC, Schaeffer L, Rocha AS, PERUCH F (2010) Surface roughness in the incremental forming of AISI 304L stainless steel sheets. Far East J Mech Eng Phys 1:87–98

    Google Scholar 

  34. Arshad S (2012) A study of forming parameters, forming limits and part accuracy of aluminium 2024, 6061 and 7475 alloys. PhD. thesis, KTH Royal Institute of technology Stockholm, Sweden

  35. Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87:479–499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariem Dakhli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhli, M., Boulila, A. & Tourki, Z. Effect of generatrix profile on single-point incremental forming parameters. Int J Adv Manuf Technol 93, 2505–2516 (2017). https://doi.org/10.1007/s00170-017-0598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0598-1

Keywords

Navigation