Skip to main content
Log in

Removal of critical regions by radius-varying trochoidal milling with constant cutting forces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work presents a novel milling strategy for complex pocket machining by integrating radius-varying trochoidal (RVTR) toolpath with contour parallel (CP) toolpath. Based on a quantitative analysis on the fluctuation of material removal rates (MRR), the proposed strategy is able to precisely identify critical regions from complex pocket geometries, and then by integrating flexible trochoidal radius with adaptive trochoidal step, the proposed approach is able to integrate the RVTR toolpath into CP toolpath under a consistent transition of material removal rate. Moreover, by applying RVTR toolpath, the cutting force can be maintained constantly when machining critical regions. Comparing with the trochoidal milling function available with current mainstream CAM software, experimental investigation has shown that the proposed RVTR-CP toolpath integration strategy offers a better machining condition with minimized fluctuation of cutting forces. Moreover, the total length of toolpath is decreased considerably and hence the machining efficiency is greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choy HS, Chan KW (2003) Modeling cutter swept angle at cornering cut. Int J CAD/CAM 3(1):1–12

    Google Scholar 

  2. Ibaraki S, Yamaji I, Matsubara A (2010) On the removal of critical cutting regions by trochoidal grooving. Precis Eng 34(3):467–473. https://doi.org/10.1016/j.precisioneng.2010.01.007

    Article  Google Scholar 

  3. Tarng YS, Cheng ST (1993) Fuzzy control of feed rate in end milling operations. Int J Mach Tools Manuf 33(4):643–650. https://doi.org/10.1016/0890-6955(93)90098-F

    Article  Google Scholar 

  4. Erdim H, Lazoglu I, Ozturk B (2006) Feedrate scheduling strategies for free-form surfaces. Int J Mach Tools Manuf 46(7):747–757. https://doi.org/10.1016/j.ijmachtools.2005.07.036

    Article  Google Scholar 

  5. Uddin MS, Ibaraki S, Matsubara A, Nishida S, Kakino Y (2007) A tool path modification approach to cutting engagement regulation for the improvement of machining accuracy in 2D milling with a straight end mill. J Manuf Sci Eng 129(6):1069–1079. https://doi.org/10.1115/1.2752526

    Article  Google Scholar 

  6. Karunakaran KP, Shringi R, Ramamurthi D, Hariharan C (2010) Octree-based NC simulation system for optimization of feed rate in milling using instantaneous force model. Int J Adv Manuf Technol 46(5):465–490. https://doi.org/10.1007/s00170-009-2107-7

    Article  Google Scholar 

  7. Choy HS, Chan KW (2003) A corner-looping based tool path for pocket milling. Comput Aided Des 35(2):155–166. https://doi.org/10.1016/S0010-4485(02)00049-0

    Article  Google Scholar 

  8. Kim HC, Lee SG, Yang MY (2006) An optimized contour parallel tool path for 2D milling with flat end mill. Int J Adv Manuf Technol 31(5):567–573. https://doi.org/10.1007/s00170-005-0228-1

    Article  Google Scholar 

  9. Held M, Spielberger C (2009) A smooth spiral tool path for high speed machining of 2D pockets. Comput Aided Des 41(7):539–550. https://doi.org/10.1016/j.cad.2009.04.002

    Article  Google Scholar 

  10. Rauch M, Duc E, Hascoet JY (2009) Improving trochoidal tool paths generation and implementation using process constraints modeling. Int J Mach Tools Manuf 49(5):375–383. https://doi.org/10.1016/j.ijmachtools.2008.12.006

    Article  Google Scholar 

  11. Elber G, Cohen E, Drake S (2005) MATHSM: medial axis transform toward high speed machining of pockets. Comput Aided Des 37(2):241–250. https://doi.org/10.1016/j.cad.2004.05.008

    Article  Google Scholar 

  12. Ferreira JCE, Ochoa DM (2013) A method for generating trochoidal tool paths for 2D pocket milling process planning with multiple tools. Proc Inst Mech Eng Part B: J Eng Manuf 227(9):1287–1298. https://doi.org/10.1177/0954405413487897

    Article  Google Scholar 

  13. Wu S, Ma W, Li B, Wang C (2016) Trochoidal machining for the high-speed milling of pockets. J Mater Process Technol 233:29–43. https://doi.org/10.1016/j.jmatprotec.2016.01.033

    Article  Google Scholar 

  14. Wu S, Zhao Z, Wang CY, Xie Y, Ma W (2016) Optimization of toolpath with circular cycle transition for sharp corners in pocket milling. Int J Adv Manuf Technol 86(9–12):1–11. https://doi.org/10.1007/s00170-016-8364-3

    Google Scholar 

  15. Deng Q, Mo R, Chen ZC, Chang Z (2017) A new approach to generating trochoidal tool paths for effective corner machining. Int J Adv Manuf Technol 1–4:1–12. https://doi.org/10.1007/s00170-017-1353-3

    Google Scholar 

  16. Sun C, Wang YH, Huang ND (2015) A new plunge milling tool path generation method for radial depth control using medial axis transform. Int J Adv Manuf Technol 76(9–12):1575–1582. https://doi.org/10.1007/s00170-014-6375-5

    Article  Google Scholar 

  17. Wang QH, Wang S, Jiang F, Li JR (2016) Adaptive trochoidal toolpath for complex pockets machining. Int J Prod Res 54(20):1–14. https://doi.org/10.1080/00207543.2016.1143135

    Google Scholar 

  18. Ohtsu N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man & Cybernetics 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  19. Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inf Theory 29(4):551–559. https://doi.org/10.1109/TIT.1983.1056714

    Article  MathSciNet  MATH  Google Scholar 

  20. Otkur M, Lazoglu I (2007) Trochoidal milling. Int J Mach Tools Manuf 47(9):1324–1332. https://doi.org/10.1016/j.ijmachtools.2006.08.002

    Article  Google Scholar 

  21. Held M (2001) VRONI: an engineering approach to the reliable and efficient computation of voronoi diagrams of points and line segments. Comput Geom 18(2):95–123. https://doi.org/10.1016/S0925-7721(01)00003-7

    Article  MathSciNet  MATH  Google Scholar 

  22. Kloypayan J, Lee YS (2002) Material engagement analysis of different endmills for adaptive feedrate control in milling processes. Comput Ind 47(1):55–76. https://doi.org/10.1016/S0166-3615(01)00136-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China [grant numbers 51575192 and 51775192] and the Science & Technology Research Program of Guangdong, China [grant numbers 2015B090922010 and 2017B010110010].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Rong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QH., Liao, ZY., Zheng, YX. et al. Removal of critical regions by radius-varying trochoidal milling with constant cutting forces. Int J Adv Manuf Technol 98, 671–685 (2018). https://doi.org/10.1007/s00170-018-2298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2298-x

Keywords

Navigation