Skip to main content
Log in

Micromachining of PMMA—manufacturing of burr-free structures with single-edge ultra-small micro end mills

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Nowadays, the prototypes of microfluidic systems are generally produced via micromilling of thermoplastic polymethyl methacrylate (PMMA). The main limitations are the design of micro tools with diameters D ≤ 50 μm adapted for each application, and the understanding of the machining process itself. The objective of this research work is to contribute to mastering the process of PMMA micromilling with tool diameters D ≤ 50 μm on a 3-axes precision milling machine. For this purpose, the process design must include the complete process chain—from the CAD/CAM data up to the final structure geometry. The main requirements are the manufacture of microfluidic structures with Ra < 60 nm on the groove bottom and a top burr overhang h0 < 3 μm. Based on the experimental results, milling parameters were established and the influence of the tool geometry on the burr formation was determined. Finally, CAD/CAM machining strategies were recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann Manuf Technol 55(2):745–768

    Article  Google Scholar 

  2. Jiao F, Cheng K (2014) An experimental investigation on micro-milling of PMMA components with nanometric surface roughness. Proc IMechE B J Eng Manuf 228(5):790–796

    Article  Google Scholar 

  3. Guber AE, Heckele M, Herrmann D, Muslija A, Saile V, Eichhorn L, Gietzelt T, Hoffmann W, Hauser PC, Tanyanyiwa J, Gerlach A, Gottschlich N, Knebel G (2004) Microfluidic lab-on-a-chip systems based on polymers—fabrication and application. Chem Eng J 101(1–3):447–453

    Article  Google Scholar 

  4. Schubert A, Groß S, Schulz B, Eckert U (2011) Sequential combination of micro-milling and laser structuring for manufacturing of complex micro-fluidic structures. Phys Procedia 12:221–229

    Article  Google Scholar 

  5. Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK (2015) Micromilling. A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11):2364–2378

    Article  Google Scholar 

  6. Kang H-J, Ahn S-H (2007) Fabrication and characterization of microparts by mechanical micromachining: precision and cost estimation. Proc Inst Mech Eng B J Eng Manuf 221(2):231–240

    Article  Google Scholar 

  7. Bundgaard F, Perozziello G, Geschke O (2006) Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. Proc Inst Mech Eng C J Mech Eng Sci 220(11):1625–1632

    Article  Google Scholar 

  8. Jáuregui AL, Siller HR, Rodríguez CA, Elías-Zúñiga A (2010) Evaluation of micromechanical manufacturing processes for microfluidic devices. Int J Adv Manuf Technol 48(9–12):963–972

    Article  Google Scholar 

  9. Dimov S, Pham DT, Ivanov A, Popov K, Fansen K (2004) Micromilling strategies. Optimization issues. Proc Inst Mech Eng B J Eng Manuf 218(7):731–736

    Article  Google Scholar 

  10. Choy HS, Chan KW (2003) A corner-looping based tool path for pocket milling. Comput Aided Des 35(2):155–166

    Article  Google Scholar 

  11. Litwinski, K. M., Min, S., Lee, D., Dornfeld, D., and Lee, N. 2006. Scalability of tool path planning to micro machining. In 1st International Conference on Micromanufacturing, 28

  12. Aurich JC, Dornfeld D (eds) (2010) Burrs—analysis, control and removal. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  13. DIN Deutsches Institut für Normung e. V. 2000-12-00 Technische Zeichnungen - Werkstückkanten mit unbestimmter Form - Begriffe und Zeichnungsangaben (ISO 13715:2000). Beuth Verlag GmbH, 137415

  14. Schueler, G. M., Engmann, J., Marx, T., Haberland, R., and Aurich, J. C. 2010. Burr formation and surface characteristics in micro-end milling of titanium alloys. In Burrs—analysis, control and removal, J. C. Aurich and D. Dornfeld, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 129–138. https://doi.org/10.1007/978-3-642-00568-8_14

  15. thinXXS Microtechnology AG. Modulare OEM Dienstleistungen. http://www.thinxxs.de/fileadmin/website/pdf/Modular-OEM-Services_thinXXS.pdf. Accessed 24 August 2015

  16. Schäfer, F. 1975. Entgraten. Theorie, Verfahren, Anlagen. Buchreihe Produktionstechnik heute Bd. 14. Krausskopf-Verlag, [Mainz, Germany]

  17. Kishimoto W, Miyake T, Yamamoto A, Yamanaka K, Takano K (1981) Study of burr formation in face milling. Conditions for the secondary burr formation. J Jpn Soc Precis Engineering:51–52

  18. Hashimura M, Chang YP, Dornfeld D (1999) Analysis of burr formation mechanism in orthogonal cutting. J Manuf Sci Eng 121(1):1

    Article  Google Scholar 

  19. Nakayama K, Arai M (1987) Burr formation in metal cutting. CIRP Ann Manuf Technol 36(1):33–36

    Article  Google Scholar 

  20. Gillespie LK (1979) Deburring precision miniature parts. Precis Eng 1(4):189–198

    Article  Google Scholar 

  21. Ko S-L, Dornfeld DA (1991) A study on burr formation mechanism. J Eng Mater Technol 113(1):75

    Article  Google Scholar 

  22. Chern G-L (2006) Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. Int J Mach Tools Manuf 46(12–13):1517–1525

    Article  Google Scholar 

  23. Chern G-L, Wu Y-JE, Cheng J-C, Yao J-C (2007) Study on burr formation in micro-machining using micro-tools fabricated by micro-EDM. Precis Eng 31(2):122–129

    Article  Google Scholar 

  24. de Assis CLF, Jasinevicius RG, Rodrigues AR (2015) Micro end-milling of channels using ultrafine-grained low-carbon steel. Int J Adv Manuf Technol 77(5–8):1155–1165

    Article  Google Scholar 

  25. Piquard R, D’Acunto A, Laheurte P, Dudzinski D (2014) Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation. Precis Eng 38(2):356–364

    Article  Google Scholar 

  26. Weinert K, Petzoldt V (2004) Machining of NiTi based shape memory alloys. Mater Sci Eng A 378(1–2):180–184 References

    Article  Google Scholar 

  27. DIN Deutsches Institut für Normung e. V. 1981-09-00. Begriffe der Zerspantechnik; Standbegriffe. Beuth Verlag GmbH, 6583

  28. Câmara MA, Rubio JC, Abrão AM, Davim JP (2012) State of the art on micromilling of materials, a review. J Mater Sci Technol 28(8):673–685

    Article  Google Scholar 

  29. Aurich JC, Reichenbach IG, Schueler GM (2012) Manufacture and application of ultra-small micro end mills. CIRP Ann Manuf Technol 61:83–86

    Article  Google Scholar 

  30. Datron AG. 2015. DATRON Acryl- und Plexiglas®-Fräser. https://www.datron.de//de_de/service/download.html?tx_hddownloader_pi1%5Busrid%5D=4808&tx_hddownloader_pi1%5Busrkey%5D=26c02&tx_hddownloader_pi1%5Bfilid%5D=161

  31. Denkena, B. and Tönshoff, H. K. 2011. Spanen. Grundlagen. Springer, Heidelberg, New York

  32. Gs Vieregge. 1970. Zerspanung der Eisenwerkstoffe. Stahleisen Verlag, Düsseldorf

  33. Hehenberger, P. 2011. Computerunterstützte Fertigung. Eine kompakte Einführung. Springer, Berlin [u.a.]

  34. DIN Deutsches Institut für Normung e. V. 1983-01-00. Programmaufbau für numerisch gesteuerte Arbeitsmaschinen - Allgemeines. Beuth Verlag GmbH, DIN 66025–1

  35. Reichenbach, I. G. and Aurich, J. C. 2013. Untersuchung der Oberflächengüte beim Mikrofräsen - Einfluss von Prozessparametern und Einstellwinkel der Nebenschneide bei 48 μm Mikroschaftwerkzeugen. wt Werkstattstechnik online 103, 11-12, 847–852

  36. DIN Deutsches Institut für Normung e. V. 1998-04-00. Geometrische Produktspezifikation (GPS) - Oberflächenbeschaffenheit: Tastschnittverfahren - Regeln und Verfahren für die Beurteilung der Oberflächenbeschaffenheit (ISO 4288:1996); Deutsche Fassung EN ISO 4288:1997. Beuth Verlag GmbH, 4288

  37. Carr JW, Feger C (1993) Ultraprecision machining of polymers. Precis Eng 15(4):221–237

    Article  Google Scholar 

Download references

Funding

This research was funded by the German Research Foundation (DFG) within the Collaborative Research Center 926 “Microscale Morphology of Component Surfaces.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio J. P. Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichenbach, I.G., Bohley, M., Sousa, F.J.P. et al. Micromachining of PMMA—manufacturing of burr-free structures with single-edge ultra-small micro end mills. Int J Adv Manuf Technol 96, 3665–3677 (2018). https://doi.org/10.1007/s00170-018-1821-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1821-4

Keywords

Navigation