Skip to main content
Log in

Effects of different chamfered cutting edges of micro end mill on cutting performance

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tool life is a significant issue for the application of micro mills. Optimizing cutting edge geometries of micro mill is an effective way to improve tool life. This paper investigates the effects of different chamfered cutting edges of micro mill on the tool cutting performance. A series of slot milling experiments are conducted on aluminum alloy 7075 by using micro mills with various cutting edge chamfer lengths, and the tool wear and surface roughness are measured. The results show that the cutting edge chamfer of micro mill can improve the tool life. For the micro mill fabricated with sharp cutting edge, the fracture of cutting edge easily occurs resulting in the tool early broken. As the cutting edge chamfer length is bigger, the tool life becomes longer, but the tool flank wear width increases due to the higher stress in cutting region. However, the effects of various cutting edge chamfer lengths on surface roughness are not obviously found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng X, Wang Z, Nakamoto K, Yamazaki K (2010) Design and development of PCD micro straight edge end mills for micro/nano machining of hard and brittle materials. J Mech Sci Technol 24(11):2261–2268. https://doi.org/10.1007/s12206-010-0804-7

    Article  Google Scholar 

  2. Cheng X, Wang Z, Nakamoto K, Yamazaki K (2011) A study on the micro tooling for micro/nano milling. Int J Adv Manuf Technol 53(5-8):523–533. https://doi.org/10.1007/s00170-010-2856-3

    Article  Google Scholar 

  3. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann 63(2):631–653. https://doi.org/10.1016/j.cirp.2014.05.009

    Article  Google Scholar 

  4. Denkena B, Köhler J, Bergmann B (2015) Development of cutting edge geometries for hard milling operations. CIRP J Manuf Sci Technol 8:43–52

    Article  Google Scholar 

  5. Wan L, Wang D, Gao Y (2015) Investigations on the effects of different tool edge geometries in the finite element simulation of machining. Stroj Vestn-J Mech E 61(3):157–166. https://doi.org/10.5545/sv-jme.2014.2051

    Article  Google Scholar 

  6. Fang N, Wu Q (2005) The effects of chamfered and honed tool edge geometry in machining of three aluminum alloys. Int J Mach Tools Manuf 45(10):1178–1187. https://doi.org/10.1016/j.ijmachtools.2004.12.003

    Article  Google Scholar 

  7. Karpat Y, Özel T (2008) Mechanics of high speed cutting with curvilinear edge tools. Int J Mach Tools Manuf 48(2):195–208. https://doi.org/10.1016/j.ijmachtools.2007.08.015

    Article  Google Scholar 

  8. Özel T (2009) Computational modelling of 3D turning: influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. J Mater Process Technol 209(11):5167–5177. https://doi.org/10.1016/j.jmatprotec.2009.03.002

    Article  Google Scholar 

  9. Varela PI, Rakurty CS, Balaji AK (2014) Surface integrity in hard machining of 300 M steel: effect of cutting-edge geometry on machining induced residual stresses. Procedia Cirp 13:288–293. https://doi.org/10.1016/j.procir.2014.04.049

    Article  Google Scholar 

  10. Almeida FA, Oliveira FJ, Sousa M, Frenandes AJS, Sacrameto J, Silva RF (2005) Machining hardmetal with CVD diamond direct coated ceramic tools: effect of tool edge geometry. Diam Relat Mater 14(3-7):651–656. https://doi.org/10.1016/j.diamond.2004.09.002

    Article  Google Scholar 

  11. He G, Liu X, Wu C, Zhang S, Zou L, Li D (2016) Study on the negative chamfered edge and its influence on the indexable cutting insert’s lifetime and its strengthening mechanism. Int J Adv Manuf Technol 84(5–8):1229–1237

    Google Scholar 

  12. Gilbin A, Fontaine M, Michel G, Thibaud S, Picard P (2013) Capability of tungsten carbide micro-mills to machine hardened tool steel. Int J Precis Eng Manuf 14(1):23–28. https://doi.org/10.1007/s12541-013-0004-3

    Article  Google Scholar 

  13. Jafarian F, Umbrello D, Jabbaripour B (2016) Identification of new material model for machining simulation of Inconel 718 alloy and the effect of tool edge geometry on microstructure changes. Simul Model Pract Theory 66:273–284. https://doi.org/10.1016/j.simpat.2016.05.001

    Article  Google Scholar 

  14. Wang MY, Chang HY (2004) Experimental study of surface roughness in slot end milling AL2014-T6. Int J Mach Tools Manuf 44(1):51–57. https://doi.org/10.1016/j.ijmachtools.2003.08.011

    Article  Google Scholar 

  15. Kountanya R, Al-Zkeri I, Altan T (2009) Effect of tool edge geometry and cutting conditions on experimental and simulated chip morphology in orthogonal hard turning of 100Cr6 steel. J Mater Process Technol 209(11):5068–5076

    Article  Google Scholar 

  16. Kang IS, Kim JS, Kim JH, Kang MC, Seo YW (2007) A mechanistic model of cutting force in the micro end milling process. J Mater Process Technol 187–188(3):250–255

    Article  Google Scholar 

  17. Woon KS, Rahman M, Fang FZ, Neo KS, Liu K (2008) Investigations of tool edge radius effect in micromachining: a fem simulation approach. J Mater Process Technol 195(1–3):204–211. https://doi.org/10.1016/j.jmatprotec.2007.04.137

    Article  Google Scholar 

  18. Bassett E (2014) Belastungsspezifische Auslegung und Herstellung von Schneidkanten für Drehwerkzeuge (PhD-Thesis) Leibniz Universität, Hannover.

  19. Torres CD (2009) Analyzing the performance of diamond-coated micro end mills. Int J Mach Tools Manuf 49(7):599–612. https://doi.org/10.1016/j.ijmachtools.2009.02.001

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Basic Research Program of China (No. 2015CB059900), National Natural Science Foundation of China (No. 51575049), and Beijing Institute of Technology (BIT) Foundation for Fundamental Research (No. 20150342013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Liang, Z., Wang, X. et al. Effects of different chamfered cutting edges of micro end mill on cutting performance. Int J Adv Manuf Technol 96, 1215–1224 (2018). https://doi.org/10.1007/s00170-018-1640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1640-7

Keywords

Navigation