Skip to main content
Log in

Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel 718

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Understanding the chip formation is one of most important issues in controlling the grinding wheel performance or the work surface finish in grinding process. This article discusses the effects of the ultrasonic vibration and peripheral speed of grinding wheel on the chip size and geometry in ultrasonic assisted grinding (UAG) of Inconel 718 with an electroplated cBN grinding wheel. Firstly, scanning electron microscopic (SEM) observations were performed on the chips formed at different vibration amplitudes and wheel peripheral speeds. The obtained 3D SEM images were used to determine the length and cross-section area of chips. Then, the geometries of chips were observed with SEM. The obtained results demonstrated that (1) chip size and geometry were distinctly affected by the ultrasonic vibration of grinding wheel but hardly by the wheel peripheral speed, e.g., the cross-section area of chips became smaller by 64.3 % and the length decreased by 36.3 %, respectively, once the ultrasonic vibration with an amplitude of A p-p = 9.4 μm has been imposed to the grinding wheel; (2) the UAG is potentially avoiding the formation of shear chips and prefers the flow chips, especially at larger amplitude; (3) little changes were found on the chip geometry as the wheel peripheral speed increased in UAG; (4) the change in the chip size and geometry caused by the ultrasonic vibration was supposed to be owing to the ultrasonic lubrication and the vibration in the rake angle of grain cutting edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharman A, Dewes RC, Aspinwall DK (2001) Tool life when high speed ball nose end milling Inconel 718. J Mater Process Technol 118:29–35. doi:10.1016/S0924-0136(01)00855-X

    Article  Google Scholar 

  2. Radhakrishna CH, Prasad Rao K (1997) The formation and control of laves phase in superalloy 718 welds. J Mater Sci 32:1977–1984. doi:10.1023/A:1018541915113

    Article  Google Scholar 

  3. Ezugwu EO, Fadare DA, Bonney J, Da Silva RB, Sales WF (2005) Modelling the correlation between cutting and process parameters in high-speed machining of inconel 718 alloy using an artificial neural network. Int J Mach Tools Manuf 45:1375–1385. doi:10.1016/j.ijmachtools.2005.02.004

    Article  Google Scholar 

  4. Arunachalam M, Mannan MA, Spowage AC (2004) Surface integrity when machining age hardened inconel 718 with coated carbide cutting tools. Int J Mach Tools Manuf 44:1481–1491. doi:10.1016/j.ijmachtools.2004.05.005

    Article  Google Scholar 

  5. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280. doi:10.1016/j.ijmachtools.2010.11.003

    Article  Google Scholar 

  6. Khidhir BA, Mohamed B (2010) Machining of nickel based alloys using different cemented carbide tools. J Eng Sci Technol 5(3):264–271

    Google Scholar 

  7. Arunachalam RM, Mannan MA, Spowage AC (2004) Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. Int J Mach Tools Manuf 44:879–887. doi:10.1016/j.ijmachtools.2004.02.016

    Article  Google Scholar 

  8. Ozcelik B, Oktem H, Kurtaran H (2005) Optimum surface roughness in end milling inconel 718 by coupling neural network model and genetic algorithm. Int J Adv Manuf Technol 27:234–241. doi:10.1007/s00170-004-2175-7

    Article  Google Scholar 

  9. Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of inconel 718 and Ti-6Al-6V-2Sn. Wear 202:142–148. doi:10.1016/S0043-1648(96)07255-9

    Article  Google Scholar 

  10. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to- machine materials with regard to cutting fluids. Int J Mach Tools Manuf 57:83–101. doi:10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  11. Santosh Ranganath, Changsheng Guo, Sean Holt (2009) Experimental Investigations Into the Carbide Cracking Phenomenon on Inconel 718 Superalloy Material, ASME 2009 International Manufacturing Science and Engineering Conference Volume 2:33–39. doi:10.1115/MSEC2009-84085

  12. Zemzemi F, Rech J, Ben Salem W, Dogui A, Kapsa P (2014) Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an Inconel 718 alloy with CBN and coated carbide tools. Adv Manuf Sci Technol 38(1):5–22. doi:10.2478/amst-2014-0001

    Google Scholar 

  13. Ohkubo C, Toshio H, Phillip Ford J, Watanabe I (2006) Effect of surface reaction layer on grindability of cast titanium alloys. Dent Mater 22(3):268–274. doi:10.1016/j.dental.2005.04.020

    Article  Google Scholar 

  14. Irani RA, Bauer RJ, Warkentin A (2005) A review of cutting fluid application in the grinding process. Int J Mach Tools Manuf 45:1696–1705. doi:10.1016/j.ijmachtools.2005.03.006

    Article  Google Scholar 

  15. Liu JH, Pei ZJ, Fisher GR (2007) Grinding wheels for manufacturing of silicon wafers: a literature review. Int J Mach Tools Manuf 47:1–13. doi:10.1016/j.ijmachtools.2006.02.003

    Article  Google Scholar 

  16. Brehl DE, Dow TA (2008) Review of vibration-assisted machining. Precis Eng 32:153–172. doi:10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  17. Pei Z, Ferreira P (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining, Int. J Mach Tools Manuf 38:1399–1418. doi:10.1016/S0890-6955(98)00007-8

    Article  Google Scholar 

  18. Jianguo C, Yongbo W, Dong L, Masakazu F, Mitsuyoshi N (2014) Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool. Int J Mach Tools Manuf 79:49–61. doi:10.1016/j.ijmachtools.2014.02.002

    Article  Google Scholar 

  19. Bhaduri D, Soo SL, Aspinwal DK (2012) A study on ultrasonic assisted creep feed grinding of nickel based superalloys. Procedia CIRP 1:359–364. doi:10.1016/j.procir.2012.04.064

    Article  Google Scholar 

  20. Bhaduri D, Soo SL, Novovic D, Aspinwall DK, Harden P, Waterhouse C (2013) Ultrasonic assisted creep feed grinding of inconel 718. Procedia CIRP 6:616–621. doi:10.1016/j.procir.2013.03.044

    Article  Google Scholar 

  21. Zahedi A, Tawakoli T, Akbari J (2015) Energy aspects and workpiece surface characteristics in ultrasonic assisted cylindrical grinding of alumina-zirconia ceramics. Int J Mach Tools Manuf 90:16–28. doi:10.1016/j.ijmachtools.2014.12.002

    Article  Google Scholar 

  22. Tso P-L, Wu S-H (1990) Analysis of grinding quantities through chip sizes. J Mater Process Technol 95:1–17. doi:10.1016/S0924-0136(99)00297-6

    Article  Google Scholar 

  23. Lu L, Farris TN, Chandrasekar S (1992) Paper VI (iv) sliding microindentation wear particles: spheres in grinding swarf. Tribology Series 21:257–263. doi:10.1016/S0167-8922(08)70531-5

    Article  Google Scholar 

  24. Jianbo D, Wenfeng D, Liangchi Z, Jiuhua X, Honghua S (2015) Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding. Int J Adv Manuf Technol 81(5):995–1005. doi:10.1007/s00170-015-7265-1

    Google Scholar 

  25. Milton C. Shaw (1996) Principles of abrasive processing, Mech. Chem. Engng., Inst. Engrs, Australia MC8, 73

  26. Salje E, Mohlgan H (1986) Fundamental dependencies upon contact lengths and results in grinding. CIRP Ann Manuf Technol 35(1):249–253. doi:10.1016/S0007-8506(07)61881-2

    Article  Google Scholar 

  27. Ioan D. Marinescu Mike P. Hitchiner, Eckart Uhlmann W. Brian Rowe Ichiro Inasak (2006) Handbook of Machining with Grinding Wheels, CRC Press, Technology & Engineering:632 ISBN: 978-1-57444-671-5

  28. Taghi T, Bahman A, Mohammad R (2009) Ultrasonic assisted dry grinding of 42CrMo4. Int J Adv Manuf Technol 42:883–891. doi:10.1007/s00170-008-1646-7

    Article  Google Scholar 

  29. Tso P-L (1995) An investigation of chip types in grinding. J Mater Process Technol 53:521–532. doi:10.1016/0924-0136(94)01746-N

    Article  Google Scholar 

  30. Wu YB, Nomura M, Feng ZJ, Kato M (2004) Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding. Mater Sci Forum 471–472:101–106. doi:10.4028/www.scientific.net/MSF.471-472.101

    Article  Google Scholar 

  31. Teidelt E, Starcevic J, Popov VL (2012) Influence of ultrasonic oscillation on static and sliding friction. Tribol Lerr 48:51–62. doi:10.1007/s11249-012-9937-4

    Article  Google Scholar 

  32. Park CH, Inman DJ (2003) Enhanced piezoelectric shunt design. Shock Vib 10(2):127–133. doi:10.1155/2003/863252

    Article  Google Scholar 

  33. Aslan D, Budak E (2015) Surface roughness and thermo-mechanical force modeling for grinding operations with regular and circumferentially grooved wheel. Int J Mach Tools Manuf 223:75–90. doi:10.1016/j.jmatprotec.2015.03.023

    Google Scholar 

  34. Liang Z, Wu Y, Wang X, Zhao W (2010) A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining. Int J Mach Tools Manuf 5(8):728–736. doi:10.1016/j.ijmachtools.2010.04.005

    Article  Google Scholar 

  35. Griffith B (2001) Manufacturing, surface technology-surface integrity and functional performance. Penton Press, London

    Google Scholar 

  36. Armarego EJ, Brown RH (1969) The machining of metals. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  37. Park HW (2008) Development of micro-grinding mechanics and machine tools. Georgia Institute of Technology, United States

    Google Scholar 

  38. Zhang DK, Li C, Jia D, Zhang Y (2014) Investigation into engineering ceramics grinding mechanism and the influential factors of the grinding force. Int J Control Autom 7(4):19–34. doi:10.14257/ijca.2014.7.4.03

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, Y. & Nomura, M. Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel 718. Int J Adv Manuf Technol 86, 1113–1125 (2016). https://doi.org/10.1007/s00170-015-8149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-8149-0

Keywords

Navigation