Skip to main content
Log in

Spindle thermal error robust modeling using LASSO and LS-SVM

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

To improve the spindle thermal error prediction accuracy, the least absolute shrinkage and selection operator (LASSO) is used to directly select the temperature-sensitive point subset to guarantee the prediction performance of the thermal error model built by least squares support vector machines (LS-SVM). Taking a horizontal machining center as a test stand, the thermal error experiments with different spindle speed states are carried out. Then the temperature-sensitive points are selected using LASSO. The number of temperature-sensitive points is reduced from 20 to 7. Afterward, the thermal error model is designed by LS-SVM. The prediction performance and generalization performance of the thermal error model are compared with another two thermal error models using gray model (GM) and multiple linear regression (MLR), respectively. The comparison results indicate that the thermal error model derived from LS-SVM shows better prediction performance and generalization performance than those derived from GM and MLR with the highest prediction accuracy increasing about 74.6 and 54.3%, respectively. Thus, the feasibility and effectiveness of the proposed spindle thermal error robust modeling method are validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part II: thermal errors. Int J Mach Tools Manuf 40(9):1257–1284

    Article  Google Scholar 

  2. Mayr J, Jedrzejewski J, Uhlmann E, Alkan Donmez M, Knapp W, Hartig F, Wendt K, Moriwaki T, Shore P, Schmitt R (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  Google Scholar 

  3. Li Y, Zhao WH, Lan SH, Ni J, Wu WW, Lu BH (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38

    Article  Google Scholar 

  4. Cao HR, Zhang XW, Chen XF (2016) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52

    Article  Google Scholar 

  5. Abdulshahed AM, Longstall AP, Fletcher S (2015) The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Appl Soft Comput 27:158–168

    Article  Google Scholar 

  6. Tan F, Yin GF, Yin Q, Dong GH, Wang L (2016) CNC machine tool thermal error modeling based on GM-LS-SVM hierarchical model. J Central South Univ (Sci and Technol) 12:4028–4034 (in Chinese)

    Google Scholar 

  7. Sun LJ, Ren MJ, Hong HB, Yin YH (2017) Thermal error reduction based on thermodynamics structure optimization method for an ultra-precision machine tool. Int J Adv Manuf Technol 88(5–8):1267–1277

    Article  Google Scholar 

  8. Creighton E, Honegger A, Tulsian A, Mukhopadhyaye D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393

    Article  Google Scholar 

  9. Wang LP, Wang HT, Li TM, Li FC (2015) A hybrid thermal error modeling method of heavy machine tools in z-axis. Int J Adv Manuf Technol 80(1–4):389–400

    Article  Google Scholar 

  10. Holman JP (2010) Heat transfer. McGraw-Hill

  11. Liang RJ, Ye WH, Zhang HY, Yang QF (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176

    Google Scholar 

  12. Guo QJ, Yang JG, Wu H (2010) Application of ACO-BPN to thermal error modeling of NC machine tool. Int J Adv Manuf Technol 50(5):667–675

    Article  Google Scholar 

  13. Guo QJ, Xu RF, Yang TY, He L, Cheng X, Li ZY, Yang JG (2016) Application of GRAM and AFSACA-BPN to thermal error optimization modeling of CNC machine tools. Int J Adv Manuf Technol 83(5–8):995–1002

    Article  Google Scholar 

  14. Ma C, Zhao L, Mei XS, Shi H, Yang J (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89(9–12):3071–3085

    Article  Google Scholar 

  15. Miao EM, Liu Y, Liu H, Gao ZH, Li W (2015) Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. Int J Adv Manuf Technol 97:50–59

    Google Scholar 

  16. Wang HT, Wang LP, Li TM, Han J (2013) Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method. Int J Adv Manuf Technol 69(1):121–126

    Article  Google Scholar 

  17. Cheng Q, Qi Z, Zhang GJ, Zhao YS, Sun BW, Gu PH (2016) Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks. Int J Adv Manuf Technol 83(5):1–12

    Google Scholar 

  18. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  19. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Statist Soft 33(1):1–22

    Article  Google Scholar 

  20. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Statist Soc B 67(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

  21. Suykens J A K, Van Gestel T, De Brabanter J (2002) Least squares support vector machines. World Scientific

  22. Liu SF, Dang YG, Fang ZG (2010) Gray system theory and its application. Science Press, Beijing

    Google Scholar 

  23. Zhang Y, Yang JG, Jiang H (2012) Machine tool thermal error modeling and prediction by grey neural network. Int J Adv Manuf Technol 59(9):1065–1072

    Article  Google Scholar 

  24. ISO 230-3 (2007) Test code for machine tools part 3: determination of thermal effects. ISO copyright office, Geneva

    Google Scholar 

  25. Geisser S (1993) Predictive inference. CRC press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, F., Yin, M., Wang, L. et al. Spindle thermal error robust modeling using LASSO and LS-SVM. Int J Adv Manuf Technol 94, 2861–2874 (2018). https://doi.org/10.1007/s00170-017-1096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1096-1

Keywords

Navigation